当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
From Synthesis to Mechanisms: In-Depth Exploration of the Dual-Atom Catalytic Mechanisms Toward Oxygen Electrocatalysis
Advanced Materials ( IF 27.4 ) Pub Date : 2024-02-20 , DOI: 10.1002/adma.202311434 Lei Lei 1 , Xinghua Guo 1 , Xu Han 1 , Ling Fei 1 , Xiao Guo 1, 2 , De-Gao Wang 1, 2, 3
Advanced Materials ( IF 27.4 ) Pub Date : 2024-02-20 , DOI: 10.1002/adma.202311434 Lei Lei 1 , Xinghua Guo 1 , Xu Han 1 , Ling Fei 1 , Xiao Guo 1, 2 , De-Gao Wang 1, 2, 3
Affiliation
Dual-atom catalysts (DACs) hold a higher metal atom loading and provide greater flexibility in terms of the structural characteristics of their active sites in comparison to single-atom catalysts. Consequently, DACs hold great promise for achieving improved catalytic performance. This article aims to provide a focused overview of the latest advancements in DACs, covering their synthesis and mechanisms in reversible oxygen electrocatalysis, which plays a key role in sustainable energy conversion and storage technologies. The discussion starts by highlighting the structures of DACs and the differences in diatomic coordination induced by various substrates. Subsequently, the state-of-the-art fabrication strategies of DACs for oxygen electrocatalysis are discussed from several different perspectives. It particularly highlights the challenges of increasing the diatomic loading capacity. More importantly, the main focus of this overview is to investigate the correlation between the configuration and activity in DACs in order to gain a deeper understanding of their active roles in oxygen electrocatalysis. This will be achieved through density functional theory calculations and sophisticated in situ characterization technologies. The aim is to provide guidelines for optimizing and upgrading DACs in oxygen electrocatalysis. Additionally, the overview discusses the current challenges and future prospects in this rapidly evolving area of research.
中文翻译:
从合成到机理:氧电催化双原子催化机理的深入探索
与单原子催化剂相比,双原子催化剂(DAC)具有更高的金属原子负载量,并且在活性位点的结构特征方面提供了更大的灵活性。因此,DAC 在提高催化性能方面具有广阔的前景。本文旨在重点概述 DAC 的最新进展,涵盖其合成和可逆氧电催化机制,可逆氧电催化在可持续能源转换和存储技术中发挥着关键作用。讨论首先强调 DAC 的结构以及各种底物引起的双原子配位差异。随后,从几个不同的角度讨论了用于氧电催化的 DAC 的最先进的制造策略。它特别强调了提高双原子负载能力的挑战。更重要的是,本概述的主要重点是研究 DAC 的构型和活性之间的相关性,以便更深入地了解它们在氧电催化中的活性作用。这将通过密度泛函理论计算和复杂的原位表征技术来实现。目的是为氧电催化中 DAC 的优化和升级提供指导。此外,概述还讨论了这个快速发展的研究领域当前的挑战和未来的前景。
更新日期:2024-02-20
中文翻译:
从合成到机理:氧电催化双原子催化机理的深入探索
与单原子催化剂相比,双原子催化剂(DAC)具有更高的金属原子负载量,并且在活性位点的结构特征方面提供了更大的灵活性。因此,DAC 在提高催化性能方面具有广阔的前景。本文旨在重点概述 DAC 的最新进展,涵盖其合成和可逆氧电催化机制,可逆氧电催化在可持续能源转换和存储技术中发挥着关键作用。讨论首先强调 DAC 的结构以及各种底物引起的双原子配位差异。随后,从几个不同的角度讨论了用于氧电催化的 DAC 的最先进的制造策略。它特别强调了提高双原子负载能力的挑战。更重要的是,本概述的主要重点是研究 DAC 的构型和活性之间的相关性,以便更深入地了解它们在氧电催化中的活性作用。这将通过密度泛函理论计算和复杂的原位表征技术来实现。目的是为氧电催化中 DAC 的优化和升级提供指导。此外,概述还讨论了这个快速发展的研究领域当前的挑战和未来的前景。