当前位置:
X-MOL 学术
›
Algebra Number Theory
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A categorical Künneth formula for constructible Weil sheaves
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-02-16 , DOI: 10.2140/ant.2024.18.499 Tamir Hemo , Timo Richarz , Jakob Scholbach
中文翻译:
可构造威尔滑轮的绝对 Künneth 公式
更新日期:2024-02-18
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-02-16 , DOI: 10.2140/ant.2024.18.499 Tamir Hemo , Timo Richarz , Jakob Scholbach
We prove a Künneth-type equivalence of derived categories of lisse and constructible Weil sheaves on schemes in characteristic for various coefficients, including finite discrete rings, algebraic field extensions , , and their rings of integers . We also consider a variant for ind-constructible sheaves which applies to the cohomology of moduli stacks of shtukas over global function fields.
中文翻译:
可构造威尔滑轮的绝对 Künneth 公式
我们在特征方案上证明了 lisse 和可构造 Weil 滑轮的派生范畴的 Künneth 型等价性对于各种系数,包括有限离散环、代数域扩展,,以及它们的整数环。我们还考虑了可构造滑轮的一种变体,它适用于全局函数域上 shtukas 模堆栈的上同调。