当前位置: X-MOL 学术Algebra Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Generalized Igusa functions and ideal growth in nilpotent Lie rings
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-02-16 , DOI: 10.2140/ant.2024.18.537
Angela Carnevale , Michael M. Schein , Christopher Voll

We introduce a new class of combinatorially defined rational functions and apply them to deduce explicit formulae for local ideal zeta functions associated to the members of a large class of nilpotent Lie rings which contains the free class-2-nilpotent Lie rings and is stable under direct products. Our results unify and generalize a substantial number of previous computations. We show that the new rational functions, and thus also the local zeta functions under consideration, enjoy a self-reciprocity property, expressed in terms of a functional equation upon inversion of variables. We establish a conjecture of Grunewald, Segal, and Smith on the uniformity of normal zeta functions of finitely generated free class-2-nilpotent groups.



中文翻译:

幂零李环中的广义 Igusa 函数和理想增长

我们引入了一类新的组合定义的有理函数,并应用它们推导出与一大类幂零李环的成员相关的局部理想 zeta 函数的显式公式,该幂零李环包含自由的 2 类幂零李环,并且在直接条件下是稳定的产品。我们的结果统一并概括了以前的大量计算。我们表明,新的有理函数以及所考虑的局部 zeta 函数具有自互易性质,以变量反演时的函数方程的形式表示。我们建立了 Grunewald、Segal 和 Smith 关于有限生成的自由 2 类幂零群的正常 zeta 函数的一致性的猜想。

更新日期:2024-02-18
down
wechat
bug