当前位置: X-MOL 学术ACS Appl. Polym. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Imparting Stretchable Semiconducting Polymers with Ambipolar Charge-Transport Capability by Using a Lewis Base of Triazabicyclodecene
ACS Applied Polymer Materials ( IF 4.4 ) Pub Date : 2024-02-15 , DOI: 10.1021/acsapm.3c02649
Hao-Chi Yen, Chih-Yuan Sung, Pin-Hong Chen, Yan-Cheng Lin, Tomoya Higashihara, Wen-Chang Chen

Stretchable devices have attracted attention in recent years owing to the rapid development of wearable electronics. However, extensive procedures and structural optimization are often required to synthesize strain-insensitive polymers with a satisfactory charge transport performance. In addition, the ambipolar transport of transistors enables more fascinating and compact electronics. We hereby mix diketopyrrolopyrrole-alt-bithiophene (DPP2T) and isoindigo-alt-bithiophene (IID2T) units in the forms of block copolymer (BCP), random copolymer (RP), and polymer blend (PB), and adopt a Lewis base of triazabicyclodecene (TBD) as an additive to impart ambipolar charge transport and intrinsic stretchability. Accordingly, BCP shows the best morphological and energy level compatibility with TBD, indicating the most effective dopant accommodability. In addition, the physically order-disrupting nature of additives enables BCP and RP to strengthen the local aggregation and facilitate charge transport. Under the stretched state, the incorporated TBD proves its ability to delay the crack-onset strain and increase the dichroic ratio and crystallinity of the polymer films. Under 100% strain, the TBD-doped BCP retains 30% mobility, outperforming that of <10% retention in RP and PB. Moreover, under the cyclic stretch–release test, the TBD-doped BCP preserved 65% mobility after 800 cycles, which surpassed that of the pristine BCP, which has only 14% retention. Our work presents a methodology for optimizing the dopant accommodability of conjugated polymers to improve their stretchability and charge transport performance simultaneously. Moreover, such simple utilization for device optimization is surely impactful for developing soft electronics.

中文翻译:

利用三氮杂双环癸烯路易斯碱赋予可拉伸半导体聚合物双极电荷传输能力

近年来,由于可穿戴电子产品的快速发展,可拉伸设备引起了人们的关注。然而,通常需要大量的程序和结构优化来合成具有令人满意的电荷传输性能的应变不敏感聚合物。此外,晶体管的双极传输使得电子产品更加迷人和紧凑。我们在此以嵌段共聚物(BCP)、无规共聚物(RP)和聚合物共混物(PB)的形式混合二酮吡咯并吡咯-二-联吩(DPP2T)和异靛二-二-联噻吩(IID2T)单元,并采用路易斯碱三氮杂双环癸烯 (TBD) 作为添加剂,赋予双极性电荷传输和固有拉伸性。因此,BCP表现出与TBD最好的形态和能级兼容性,表明最有效的掺杂剂适应性。此外,添加剂的物理秩序破坏性质使 BCP 和 RP 能够加强局部聚集并促进电荷传输。在拉伸状态下,掺入的 TBD 证明了其延迟裂纹起始应变并提高聚合物薄膜的二色性比和结晶度的能力。在 100% 应变下,TBD 掺杂的 BCP 保留了 30% 的迁移率,优于 RP 和 PB 中 <10% 的迁移率。此外,在循环拉伸-释放测试中,TBD掺杂的BCP在800次循环后仍保持65%的迁移率,超过了原始BCP的迁移率,后者只有14%的迁移率。我们的工作提出了一种优化共轭聚合物的掺杂剂适应性的方法,以同时提高其拉伸性和电荷传输性能。此外,这种对设备优化的简单利用对于软电子产品的开发肯定会产生影响。
更新日期:2024-02-15
down
wechat
bug