当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dexterous helical magnetic robot for improved endovascular access
Science Robotics ( IF 26.1 ) Pub Date : 2024-02-14 , DOI: 10.1126/scirobotics.adh0298
R. Dreyfus 1 , Q. Boehler 1 , S. Lyttle 1 , P. Gruber 2 , J. Lussi 1 , C. Chautems 1 , S. Gervasoni 1 , J. Berberat 2 , D. Seibold 1 , N. Ochsenbein-Kölble 3, 4 , M. Reinehr 5 , M. Weisskopf 6 , L. Remonda 2 , B. J. Nelson 1
Affiliation  

Treating vascular diseases in the brain requires access to the affected region inside the body. This is usually accomplished through a minimally invasive technique that involves the use of long, thin devices, such as wires and tubes, that are manually maneuvered by a clinician within the bloodstream. By pushing, pulling, and twisting, these devices are navigated through the tortuous pathways of the blood vessels. The outcome of the procedure heavily relies on the clinician’s skill and the device’s ability to navigate to the affected target region in the bloodstream, which is often inhibited by tortuous blood vessels. Sharp turns require high flexibility, but this flexibility inhibits translation of proximal insertion to distal tip advancement. We present a highly dexterous, magnetically steered continuum robot that overcomes pushability limitations through rotation. A helical protrusion on the device’s surface engages with the vessel wall and translates rotation to forward motion at every point of contact. An articulating magnetic tip allows for active steerability, enabling navigation from the aortic arch to millimeter-sized arteries of the brain. The effectiveness of the magnetic continuum robot has been demonstrated through successful navigation in models of the human vasculature and in blood vessels of a live pig.

中文翻译:

用于改善血管内通路的灵巧螺旋磁性机器人

治疗大脑血管疾病需要进入体内受影响的区域。这通常是通过微创技术来完成的,该技术涉及使用细长的设备,例如电线和管子,由临床医生在血流中手动操作。通过推、拉和扭转,这些装置可以穿过血管的曲折路径。手术的结果在很大程度上取决于临床医生的技能和设备导航到血流中受影响的目标区域的能力,而这通常会受到弯曲血管的抑制。急转弯需要高灵活性,但这种灵活性会抑制近端插入到远端尖端推进的转换。我们提出了一种高度灵巧的磁力转向连续体机器人,它通过旋转克服了推动性限制。该装置表面上的螺旋突出物与血管壁接合,并在每个接触点将旋转转化为向前运动。铰接式磁性尖端可实现主动转向,从而实现从主动脉弓到毫米大小的大脑动脉的导航。磁性连续体机器人的有效性已通过在人体脉管系统和生猪血管模型中的成功导航得到证明。
更新日期:2024-02-14
down
wechat
bug