当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A High Working Temperature Multiferroic Induced by Inverse Temperature Symmetry Breaking
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-02-14 , DOI: 10.1021/jacs.3c12842 Lei-Yu Zhan 1, 2 , Yu Zhou 3 , Na Li 1 , Lin-Jie Zhang 3 , Xiao-Juan Xi 1 , Zhao-Quan Yao 3 , Jiong-Peng Zhao 3 , Xian-He Bu 1, 2
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-02-14 , DOI: 10.1021/jacs.3c12842 Lei-Yu Zhan 1, 2 , Yu Zhou 3 , Na Li 1 , Lin-Jie Zhang 3 , Xiao-Juan Xi 1 , Zhao-Quan Yao 3 , Jiong-Peng Zhao 3 , Xian-He Bu 1, 2
Affiliation
Molecular-based multiferroic materials that possess ferroelectric and ferroelastic orders simultaneously have attracted tremendous attention for their potential applications in multiple-state memory devices, molecular switches, and information storage systems. However, it is still a great challenge to effectively construct novel molecular-based multiferroic materials with multifunctionalities. Generally, the structure of these materials possess high symmetry at high temperatures, while processing an obvious order–disorder or displacement-type ferroelastic or ferroelectric phase transition triggered by symmetry breaking during the cooling processes. Therefore, these materials can only function below the Curie temperature (Tc), the low of which is a severe impediment to their practical application. Despite great efforts to elevate Tc, designing single-phase crystalline materials that exhibit multiferroic orders above room temperature remains a challenge. Here, an inverse temperature symmetry-breaking phenomenon was achieved in [FPM][Fe3(μ3-O)(μ-O2CH)8] (FPM stands for 3-(3-formylamino-propyl)-3,4,5,6-tetrahydropyrimidin-1-ium, which acts as the counterions and the rotor component in the network), enabling a ferroelastoelectric phase at a temperature higher than Tc (365 K). Upon heating from room temperature, two-step distinct symmetry breaking with the mm2Fm species leads to the coexistence of ferroelasticity and ferroelectricity in the temperature interval of 365–426 K. In the first step, the FPM cations undergo a conformational flip-induced inverse temperature symmetry breaking; in the second step, a typical ordered–disordered motion-induced symmetry breaking phase transition can be observed, and the abnormal inverse temperature symmetry breaking is unprecedented. Except for the multistep ferroelectric and ferroelastic switching, this complex also exhibits fascinating nonlinear optical switching properties. These discoveries not only signify an important step in designing novel molecular-based multiferroic materials with high working temperatures, but also inspire their multifunctional applications such as multistep switches.
中文翻译:
逆温度对称性破缺诱导的高工作温度多铁性材料
同时具有铁电和铁弹性有序的分子多铁材料因其在多态存储器件、分子开关和信息存储系统中的潜在应用而引起了极大的关注。然而,有效构建新型分子基多功能多铁材料仍然是一个巨大的挑战。一般来说,这些材料的结构在高温下具有较高的对称性,而在冷却过程中会因对称性破缺而引发明显的有序-无序或位移型铁弹或铁电相变。因此,这些材料只能在低于居里温度( T c )的情况下发挥作用,居里温度过低严重阻碍了它们的实际应用。尽管在提高T c方面付出了巨大努力,但设计在室温以上表现出多铁性有序的单相晶体材料仍然是一个挑战。这里,在[FPM][Fe 3 (μ 3 -O)(μ-O 2 CH) 8 ]中实现了逆温度对称破缺现象(FPM代表3-(3-甲酰氨基-丙基)-3,4 ,5,6-四氢嘧啶-1-ium,充当网络中的抗衡离子和转子组件),在高于T c (365 K) 的温度下实现铁弹电相。从室温加热后,mm2 F m 物种的两步明显对称性破缺导致在 365-426 K 的温度区间内铁弹性和铁电性共存。 第一步,FPM阳离子经历构象翻转引起的逆温度对称性破缺;第二步,可以观察到典型的有序-无序运动引起的对称性破缺相变,并且异常的逆温度对称性破缺是前所未有的。除了多步铁电和铁弹性开关之外,该复合物还表现出令人着迷的非线性光学开关特性。这些发现不仅标志着设计新型高工作温度分子基多铁性材料的重要一步,而且还启发了它们的多功能应用,例如多步开关。
更新日期:2024-02-14
中文翻译:
逆温度对称性破缺诱导的高工作温度多铁性材料
同时具有铁电和铁弹性有序的分子多铁材料因其在多态存储器件、分子开关和信息存储系统中的潜在应用而引起了极大的关注。然而,有效构建新型分子基多功能多铁材料仍然是一个巨大的挑战。一般来说,这些材料的结构在高温下具有较高的对称性,而在冷却过程中会因对称性破缺而引发明显的有序-无序或位移型铁弹或铁电相变。因此,这些材料只能在低于居里温度( T c )的情况下发挥作用,居里温度过低严重阻碍了它们的实际应用。尽管在提高T c方面付出了巨大努力,但设计在室温以上表现出多铁性有序的单相晶体材料仍然是一个挑战。这里,在[FPM][Fe 3 (μ 3 -O)(μ-O 2 CH) 8 ]中实现了逆温度对称破缺现象(FPM代表3-(3-甲酰氨基-丙基)-3,4 ,5,6-四氢嘧啶-1-ium,充当网络中的抗衡离子和转子组件),在高于T c (365 K) 的温度下实现铁弹电相。从室温加热后,mm2 F m 物种的两步明显对称性破缺导致在 365-426 K 的温度区间内铁弹性和铁电性共存。 第一步,FPM阳离子经历构象翻转引起的逆温度对称性破缺;第二步,可以观察到典型的有序-无序运动引起的对称性破缺相变,并且异常的逆温度对称性破缺是前所未有的。除了多步铁电和铁弹性开关之外,该复合物还表现出令人着迷的非线性光学开关特性。这些发现不仅标志着设计新型高工作温度分子基多铁性材料的重要一步,而且还启发了它们的多功能应用,例如多步开关。