npj Quantum Information ( IF 6.6 ) Pub Date : 2024-02-13 , DOI: 10.1038/s41534-024-00813-0 Kenta Takeda , Akito Noiri , Takashi Nakajima , Leon C. Camenzind , Takashi Kobayashi , Amir Sammak , Giordano Scappucci , Seigo Tarucha
Silicon-based spin qubits offer a potential pathway toward realizing a scalable quantum computer owing to their compatibility with semiconductor manufacturing technologies. Recent experiments in this system have demonstrated crucial technologies, including high-fidelity quantum gates and multiqubit operation. However, the realization of a fault-tolerant quantum computer requires a high-fidelity spin measurement faster than decoherence. To address this challenge, we characterize and optimize the initialization and measurement procedures using the parity-mode Pauli spin blockade technique. Here, we demonstrate a rapid (with a duration of a few μs) and accurate (with >99% fidelity) parity spin measurement in a silicon double quantum dot. These results represent a significant step forward toward implementing measurement-based quantum error correction in silicon.
中文翻译:
硅双量子点中快速单次奇偶自旋读出,保真度超过 99%
由于硅基自旋量子位与半导体制造技术的兼容性,它们为实现可扩展的量子计算机提供了潜在的途径。该系统最近的实验展示了关键技术,包括高保真量子门和多量子位操作。然而,容错量子计算机的实现需要比退相干更快的高保真自旋测量。为了应对这一挑战,我们使用奇偶校验模式泡利自旋封锁技术来表征和优化初始化和测量程序。在这里,我们演示了硅双量子点中的快速(持续时间为几微秒)和准确(保真度>99%)奇偶自旋测量。这些结果代表着在硅中实现基于测量的量子纠错向前迈出了重要一步。