当前位置:
X-MOL 学术
›
Geom. Funct. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Non-isomorphism of A∗n,2≤n≤∞, for a non-separable abelian von Neumann algebra A
Geometric and Functional Analysis ( IF 2.4 ) Pub Date : 2024-02-14 , DOI: 10.1007/s00039-024-00669-8 Rémi Boutonnet , Daniel Drimbe , Adrian Ioana , Sorin Popa
中文翻译:
对于不可分阿贝尔冯诺依曼代数 A,A*n,2≤n≤∞ 的非同构
更新日期:2024-02-14
Geometric and Functional Analysis ( IF 2.4 ) Pub Date : 2024-02-14 , DOI: 10.1007/s00039-024-00669-8 Rémi Boutonnet , Daniel Drimbe , Adrian Ioana , Sorin Popa
We prove that if A is a non-separable abelian tracial von Neuman algebra then its free powers A∗n,2≤n≤∞, are mutually non-isomorphic and with trivial fundamental group, \(\mathcal{F}(A^{*n})=1\), whenever 2≤n<∞. This settles the non-separable version of the free group factor problem.
中文翻译:
对于不可分阿贝尔冯诺依曼代数 A,A*n,2≤n≤∞ 的非同构
我们证明,如果A是不可分阿贝尔踪迹冯·诺伊曼代数,则其自由幂A ∗ n ,2≤ n ≤ Infinity 互非同构,且具有平凡基本群\(\mathcal{F}(A^ {*n})=1\),只要 2≤ n <∞。这解决了自由群因子问题的不可分离版本。