当前位置: X-MOL 学术SIAM Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
SIGEST
SIAM Review ( IF 10.8 ) Pub Date : 2024-02-08 , DOI: 10.1137/24n975840
The Editors

SIAM Review, Volume 66, Issue 1, Page 123-123, February 2024.
The SIGEST article in this issue is “A Simple Formula for the Generalized Spectrum of Second Order Self-Adjoint Differential Operators,” by Bjørn Fredrik Nielsen and Zdeněk Strakoš. This paper studies the eigenvalues of second-order self-adjoint differential operators in the continuum and discrete settings. In particular, they investigate second-order diffusion with a diffusion tensor preconditioned by the inverse Laplacian. They prove that there is a one-to-one correspondence between the spectrum of the preconditioned system and the eigenvalues of the diffusion tensor. Moreover, they investigate the relationship between the spectrum of the preconditioned operator and the generalized eigenvalue problem for its discretized counterpart and show that the latter asymptotically approximates the former. The results presented in the paper are fundamental to anyone wanting to solve elliptic PDEs. Understanding the distribution of eigenvalues is crucial for solving associated linear systems via, e.g., conjugate gradient descent whose convergence rate depends on the spread of the spectrum of the system matrix. The approach of operator preconditioning as done here with the inverse Laplacian turns the unbounded spectrum of a second-order diffusion operator into one that is completely characterized by the diffusion tensor itself. This carries over to the discrete setting, where the support of the spectrum without preconditioning is increasing as one over the squared mesh size, while in the operator preconditioned case mesh independent bounds for the eigenvalues, completely determined by the diffusion tensor, can be obtained. The original version of this article appeared in the SIAM Journal on Numerical Analysis in 2020 and has been recognized as an outstanding and well-presented result in the community. In preparing this SIGEST version, the authors have added new material to sections 1 and 2 in order to increase accessibility, added clarifications to sections 6 and 7, and added the new section 8, which contains a description of more recent results concerning the numerical approximation of the continuous spectrum. It also comments on the related differences between the (generalized) PDE eigenvalue problems for compact and noncompact operators and provides several new references.


中文翻译:

西格斯特

SIAM Review,第 66 卷,第 1 期,第 123-123 页,2024 年 2 月。
本期 SIGEST 文章是“二阶自伴微分算子广义谱的简单公式”,作者:Bjørn Fredrik Nielsen 和 Zdeněk Strakoš。本文研究了连续和离散环境下二阶自伴微分算子的特征值。特别是,他们研究了具有由逆拉普拉斯预处理的扩散张量的二阶扩散。他们证明了预处理系统的谱与扩散张量的特征值之间存在一一对应的关系。此外,他们研究了预处理算子的谱与其离散对应物的广义特征值问题之间的关系,并表明后者渐近地逼近前者。论文中提出的结果对于任何想要求解椭圆偏微分方程的人来说都是基础。了解特征值的分布对于通过共轭梯度下降等方法求解关联的线性系统至关重要,共轭梯度下降的收敛速度取决于系统矩阵谱的扩展。这里使用逆拉普拉斯算子进行算子预处理的方法将二阶扩散算子的无界谱转变为完全由扩散张量本身表征的谱。这延续到离散设置,其中没有预处理的谱的支持随着网格大小的平方而增加,而在算子预处理的情况下,可以获得完全由扩散张量确定的特征值的网格独立边界。本文的原始版本发表在 2020 年《SIAM Journal on Numerical Analysis》上,并被认为是社区中出色且出色的成果。在准备此 SIGEST 版本时,作者在第 1 节和第 2 节中添加了新材料,以提高可访问性,对第 6 节和第 7 节添加了说明,并添加了新的第 8 节,其中包含有关数值近似的最新结果的描述的连续光谱。它还评论了紧致算子和非紧算子的(广义)PDE 特征值问题之间的相关差异,并提供了一些新的参考。
更新日期:2024-02-08
down
wechat
bug