当前位置: X-MOL 学术Transp. Res. Part C Emerg. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A strategic approach to handle performance uncertainties in autonomous vehicle’s car-following behavior
Transportation Research Part C: Emerging Technologies ( IF 7.6 ) Pub Date : 2024-02-06 , DOI: 10.1016/j.trc.2024.104499
Wissam Kontar , Soyoung Ahn

This paper proposes a methodology to estimate uncertainties in automated vehicle (AV) dynamics in real time via Bayesian inference. Based on the estimated uncertainty, the method aims to track the car-following (CF) performance of the AV to support strategic actions to maintain desired performance. Our methodology consists of three sequential components: (i) the Stochastic Gradient Langevin Dynamics (SGLD) is adopted to estimate parameter uncertainty relative to vehicular dynamics in real time, (ii) dynamic monitoring of car-following stability (local and string-wise), and (iii) strategic actions for control adjustment if anomaly is detected. The proposed methodology provides means to gauge AV car-following performance in real time and preserve desired performance against real time uncertainty that are unaccounted for in the vehicle control algorithm.

中文翻译:

处理自动驾驶汽车跟车行为中性能不确定性的战略方法

本文提出了一种通过贝叶斯推理实时估计自动车辆(AV)动力学不确定性的方法。基于估计的不确定性,该方法旨在跟踪自动驾驶汽车的跟车 (CF) 性能,以支持战略行动以保持所需的性能。我们的方法由三个连续的组成部分组成:(i) 采用随机梯度朗之万动力学 (SGLD) 来实时估计与车辆动力学相关的参数不确定性,(ii) 动态监测跟车稳定性(局部和串方向) ,以及 (iii) 如果检测到异常,则采取控制调整的战略行动。所提出的方法提供了实时测量自动驾驶汽车跟车性能的方法,并针对车辆控制算法中未考虑到的实时不确定性保持所需的性能。
更新日期:2024-02-06
down
wechat
bug