当前位置:
X-MOL 学术
›
Adv. Mater. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrically Reconfigurable Metasurfaces for Frequency Selective Transmission via IPMC Kirigami
Advanced Materials Technologies ( IF 6.4 ) Pub Date : 2024-02-06 , DOI: 10.1002/admt.202301879 Zicai Zhu 1 , Suijun Cheng 1 , Jiachuan Han 1 , Sen Yan 2 , Peng Fan 3 , Qiao Hu 1 , Zhen‐Hua Tang 4
Advanced Materials Technologies ( IF 6.4 ) Pub Date : 2024-02-06 , DOI: 10.1002/admt.202301879 Zicai Zhu 1 , Suijun Cheng 1 , Jiachuan Han 1 , Sen Yan 2 , Peng Fan 3 , Qiao Hu 1 , Zhen‐Hua Tang 4
Affiliation
Metasurface with programmable configurations has attracted tremendous attention due to their exotic abilities to manipulate electromagnetic waves. Herein, an electrically reconfigurable metasurface for frequency selective transmission is developed based on ionic polymer–metal composite (IPMC) kirigami. First, low-voltage driven IPMC actuators with stable actuation performance are realized, and then a thermomechanical equivalent model and a numerical electromagnetic analysis model are proposed for evaluating the deformation of the IPMC actuators and predicting the electromagnetic tunable properties of the IPMC kirigami metasurfaces, respectively. Subsequently, large-area IPMC kirigami metasurfaces are proposed and produced by using programmable nanosecond laser micro-processing technique that endows the uniformity of the kirigami units. Finally, the electromagnetic functionalities of these IPMC kirigami metasurfaces are researched and validated by experiments and numerical simulations. Both theoretical and experimental results demonstrate that the electromagnetic transmission frequency of the fabricated IPMC kirigami metasurface with 10 × 10 units can be tuned from 19.3 to 20.8 GHz by the application of a low voltage of 3 V. Compared with the existing reconfigurable metasurfaces, the proposed IPMC kirigami metasurface demonstrates clear advantages in its compact structure, lower driving-voltage, low-acoustic noise, and wide working frequency range.
中文翻译:
通过 IPMC Kirigami 进行频率选择性传输的电可重构超表面
具有可编程配置的超表面由于其操纵电磁波的奇异能力而引起了极大的关注。在此,基于离子聚合物金属复合材料(IPMC)剪纸开发了一种用于频率选择性传输的电可重构超表面。首先,实现了具有稳定驱动性能的低压驱动IPMC执行器,然后提出了热机械等效模型和数值电磁分析模型,分别用于评估IPMC执行器的变形和预测IPMC剪纸超表面的电磁可调特性。随后,利用可编程纳秒激光微加工技术提出并生产了大面积IPMC剪纸超表面,赋予了剪纸单元的均匀性。最后,通过实验和数值模拟研究和验证了这些 IPMC 剪纸超表面的电磁功能。理论和实验结果表明,通过施加3 V的低电压,所制造的具有10×10单元的IPMC剪纸超表面的电磁传输频率可以从19.3 GHz调谐到20.8 GHz。与现有的可重构超表面相比,所提出的方法IPMC剪纸超表面具有结构紧凑、驱动电压低、噪声低、工作频率范围宽等明显优势。
更新日期:2024-02-06
中文翻译:
通过 IPMC Kirigami 进行频率选择性传输的电可重构超表面
具有可编程配置的超表面由于其操纵电磁波的奇异能力而引起了极大的关注。在此,基于离子聚合物金属复合材料(IPMC)剪纸开发了一种用于频率选择性传输的电可重构超表面。首先,实现了具有稳定驱动性能的低压驱动IPMC执行器,然后提出了热机械等效模型和数值电磁分析模型,分别用于评估IPMC执行器的变形和预测IPMC剪纸超表面的电磁可调特性。随后,利用可编程纳秒激光微加工技术提出并生产了大面积IPMC剪纸超表面,赋予了剪纸单元的均匀性。最后,通过实验和数值模拟研究和验证了这些 IPMC 剪纸超表面的电磁功能。理论和实验结果表明,通过施加3 V的低电压,所制造的具有10×10单元的IPMC剪纸超表面的电磁传输频率可以从19.3 GHz调谐到20.8 GHz。与现有的可重构超表面相比,所提出的方法IPMC剪纸超表面具有结构紧凑、驱动电压低、噪声低、工作频率范围宽等明显优势。