当前位置: X-MOL 学术Algebra Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Partial sums of typical multiplicative functions over short moving intervals
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-02-06 , DOI: 10.2140/ant.2024.18.389
Mayank Pandey , Victor Y. Wang , Max Wenqiang Xu

We prove that the k-th positive integer moment of partial sums of Steinhaus random multiplicative functions over the interval (x,x + H] matches the corresponding Gaussian moment, as long as H x(log x)2k2+2+o(1) and H tends to infinity with x. We show that properly normalized partial sums of typical multiplicative functions arising from realizations of random multiplicative functions have Gaussian limiting distribution in short moving intervals (x,x + H] with H X(log X)W(X) tending to infinity with X, where x is uniformly chosen from {1,2,,X}, and W(X) tends to infinity with X arbitrarily slowly. This makes some initial progress on a recent question of Harper.



中文翻译:

短移动区间内典型乘法函数的部分和

我们证明k- 区间上 Steinhaus 随机乘法函数的部分和的第一个正整数矩X,X + H]匹配对应的高斯矩,只要H X日志 X2k2+2+1 H趋于无穷大X。我们证明,由随机乘法函数的实现所产生的典型乘法函数的适当归一化的部分和在短移动区间内具有高斯极限分布X,X + H]H X日志 XX趋于无穷大X, 在哪里X统一选自{1,2,……,X}, 和X趋于无穷大X随意地慢慢地。这使得哈珀最近的一个问题取得了一些初步进展。

更新日期:2024-02-06
down
wechat
bug