Studies in Second Language Acquisition ( IF 4.2 ) Pub Date : 2024-02-06 , DOI: 10.1017/s0272263124000020 Abdullah Alamer , Florian Schuberth , Jörg Henseler
Researchers in second language (L2) and education domain use different statistical methods to assess their constructs of interest. Many L2 constructs emerge from elements/parts, i.e., the elements define and form the construct and not the other way around. These constructs are referred to as emergent variables (also called components, formative constructs, and composite constructs). Because emergent variables are composed of elements/parts, they should be assessed through confirmatory composite analysis (CCA). Elements of emergent variables represent unique facets of the construct. Thus, such constructs cannot be properly assessed by confirmatory factor analysis (CFA) because CFA and its underlying common factor model regard these elements to be similar and interchangeable. Conversely, the elements of an emergent variable uniquely define and form the construct, i.e., they are not similar or interchangeable. Thus, CCA is the preferred approach to empirically validate emergent variables such as language skills L2 students’ behavioral engagement and language learning strategies. CCA is based on the composite model, which captures the characteristics of emergent variables more accurately. Aside from the difference in the underlying model, CCA consists of the same steps as CFA, i.e., model specification, model identification, model estimation, and model assessment. In this paper, we explain these steps. and present an illustrative example using publicly available data. In doing so, we show how CCA can be conducted using graphical software packages such as Amos, and we provide the code necessary to conduct CCA in the R package lavaan.
中文翻译:
在第二语言研究中何时以及如何使用验证性复合分析 (CCA)
第二语言(L2)和教育领域的研究人员使用不同的统计方法来评估他们感兴趣的结构。许多 L2 构造都是从元素/部分中产生的,即元素定义并形成构造,而不是相反。这些结构被称为涌现变量(也称为组件、形成结构和复合结构)。由于涌现变量由元素/部分组成,因此应通过验证性综合分析(CCA)对其进行评估。涌现变量的元素代表了结构的独特方面。因此,此类结构无法通过验证性因子分析 (CFA) 进行正确评估,因为 CFA 及其底层公因子模型认为这些元素是相似且可互换的。相反,突现变量的元素唯一地定义和形成构造,即它们不相似或可互换。因此,CCA 是实证验证新兴变量(例如语言技能、二语学生的行为参与和语言学习策略)的首选方法。 CCA基于复合模型,更准确地捕捉突现变量的特征。除了底层模型的不同之外,CCA 与 CFA 包含相同的步骤,即模型规范、模型识别、模型估计和模型评估。在本文中,我们解释了这些步骤。并使用公开数据提供说明性示例。在此过程中,我们展示了如何使用 Amos 等图形软件包进行 CCA,并且我们在 R 包 lavaan 中提供了进行 CCA 所需的代码。