当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Self-Assembly of Wheel-Shaped Nanographdiynes and Self-Template Growth of Graphdiyne
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-02-02 , DOI: 10.1021/jacs.3c12810 Guilin Hu 1, 2 , Jingyi He 1, 2 , Jing Chen 1, 2 , Yongjun Li 1, 2
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-02-02 , DOI: 10.1021/jacs.3c12810 Guilin Hu 1, 2 , Jingyi He 1, 2 , Jing Chen 1, 2 , Yongjun Li 1, 2
Affiliation
Graphdiyne (GDY) multilayers show stacking-style-dependent physical properties; thus, controlling the stacking style of nanostructures is crucial for utilizing their electrical, optical, and transport properties in electro-optical devices. Herein, we report the assemblies of nanographdiynes decorated with substituents with different steric hindrances to adjust the stacking style. We show that the π-stacked aggregates were influenced by peripheral substituents and the substrate. Steric hexaterphenyl-substituted nanoGDY scaffolds led to dimer structures stacked in the AB-3 configuration with a twist angle of 26.01° or the AB-1 configuration with an in-plane shift along one diyne link. With the interval replacement of steric substituents with long C12 alkyl chains, nanoGDYs were stacked in the AB-2 configuration to decrease the steric congestion, eventually leading to one-dimensional (1D) nanofibrous aggregates. Self-assembly in the presence of substrates can result in ABC-stacked nanoGDYs, which endowed us with the possibility of using nanoGDY as the template for GDY growth in a homogeneous reaction. High-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and near-infrared–ultraviolet–visible (NIR–UV–vis) absorption spectroscopy indicate that the crystalline GDY prepared in this way is a 1.18 eV bandgap semiconductor.
中文翻译:
轮状纳米石墨炔的自组装及石墨炔的自模板生长
石墨炔(GDY)多层膜表现出依赖于堆叠方式的物理特性;因此,控制纳米结构的堆叠方式对于在电光器件中利用其电学、光学和传输特性至关重要。在此,我们报道了用具有不同空间位阻的取代基修饰的纳米石墨二炔的组装体,以调整堆叠方式。我们发现 π 堆积聚集体受到外围取代基和底物的影响。空间六三联苯取代的nanoGDY支架导致二聚体结构堆叠成AB-3构型,扭转角为26.01°,或AB-1构型,沿着一个二炔连接进行面内移动。通过长C12烷基链的空间取代基的间隔替换,nanoGDY以AB-2构型堆叠以减少空间拥塞,最终形成一维(1D)纳米纤维聚集体。在基质存在的情况下自组装可以产生 ABC 堆叠的 nanoGDY,这使我们有可能使用 nanoGDY 作为均相反应中 GDY 生长的模板。高分辨率透射电子显微镜 (HRTEM)、粉末 X 射线衍射 (PXRD)、X 射线光电子能谱 (XPS)、拉曼光谱和近红外-紫外-可见 (NIR-UV-vis) 吸收光谱表明这样制备的晶体GDY是带隙1.18eV的半导体。
更新日期:2024-02-02
中文翻译:
轮状纳米石墨炔的自组装及石墨炔的自模板生长
石墨炔(GDY)多层膜表现出依赖于堆叠方式的物理特性;因此,控制纳米结构的堆叠方式对于在电光器件中利用其电学、光学和传输特性至关重要。在此,我们报道了用具有不同空间位阻的取代基修饰的纳米石墨二炔的组装体,以调整堆叠方式。我们发现 π 堆积聚集体受到外围取代基和底物的影响。空间六三联苯取代的nanoGDY支架导致二聚体结构堆叠成AB-3构型,扭转角为26.01°,或AB-1构型,沿着一个二炔连接进行面内移动。通过长C12烷基链的空间取代基的间隔替换,nanoGDY以AB-2构型堆叠以减少空间拥塞,最终形成一维(1D)纳米纤维聚集体。在基质存在的情况下自组装可以产生 ABC 堆叠的 nanoGDY,这使我们有可能使用 nanoGDY 作为均相反应中 GDY 生长的模板。高分辨率透射电子显微镜 (HRTEM)、粉末 X 射线衍射 (PXRD)、X 射线光电子能谱 (XPS)、拉曼光谱和近红外-紫外-可见 (NIR-UV-vis) 吸收光谱表明这样制备的晶体GDY是带隙1.18eV的半导体。