当前位置: X-MOL 学术J. Topol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The second variation of the Hodge norm and higher Prym representations
Journal of Topology ( IF 0.8 ) Pub Date : 2024-01-30 , DOI: 10.1112/topo.12322
Vladimir Marković 1 , Ognjen Tošić 2
Affiliation  

Let χ H 1 ( Σ h , Q ) $\chi \in H^1(\Sigma _h,\mathbb {Q})$ denote a rational cohomology class, and let H χ $\operatorname{H}_\chi$ denote its Hodge norm. We recover the result that H χ $\operatorname{H}_\chi$ is a plurisubharmonic function on the Teichmüller space T h ${\mathcal {T}}_h$ , and characterize complex directions along which the complex Hessian of H χ $\operatorname{H}_\chi$ vanishes. Moreover, we find examples of χ H 1 ( Σ h , Q ) $\chi \in H^1(\Sigma _{h},\mathbb {Q})$ such that H χ $\operatorname{H}_\chi$ is not strictly plurisubharmonic. As part of this construction, we find an unbranched covering π : Σ h Σ 2 $\pi:\Sigma _{h}\rightarrow \Sigma _2$ such that the subgroup of H 1 ( Σ h , Q ) $H_1(\Sigma _{h},\mathbb {Q})$ generated by lifts of simple curves from Σ 2 $\Sigma _2$ is strictly contained in H 1 ( Σ h , Q ) $H_1(\Sigma _{h},\mathbb {Q})$ . Finally, combining the characterization theorem with the Riemann–Roch, and the Li–Yau [Invent. Math. 69 (1982), no. 2, 269–291] gonality estimate, we show that geometrically uniform covers of Σ g $\Sigma _g$ satisfy the Putman–Wieland Conjecture about the induced Higher Prym representations.

中文翻译:

Hodge 范数的第二个变体和更高的 Prym 表示

χ ε H 1 Σ H , $\chi \in H^1(\Sigma _h,\mathbb {Q})$ 表示有理上同调类,并令 H χ $\操作员名称{H}_\chi$ 表示其霍奇范数。我们恢复的结果是 H χ $\操作员名称{H}_\chi$ 是 Teichmüller 空间上的多次谐波函数 时间 H ${\mathcal {T}}_h$ ,并描述复数 Hessian 矩阵所沿的复数方向 H χ $\操作员名称{H}_\chi$ 消失。此外,我们还发现了这样的例子 χ ε H 1 Σ H , $\chi \in H^1(\Sigma _{h},\mathbb {Q})$ 这样 H χ $\操作员名称{H}_\chi$ 不是严格的多次谐波。作为这个结构的一部分,我们发现了一个无分支的覆盖物 π Σ H Σ 2 $\pi:\Sigma _{h}\rightarrow \Sigma _2$ 使得子群 H 1 Σ H , $H_1(\Sigma _{h},\mathbb {Q})$ 由简单曲线的升力产生 Σ 2 $\西格玛_2$ 严格包含在 H 1 Σ H , $H_1(\Sigma _{h},\mathbb {Q})$ 。最后,将表征定理与黎曼-罗赫和李-丘[发明。数学。 69(1982),没有。 2, 269–291] gonality 估计,我们表明几何均匀覆盖 Σ G $\西格玛_g$ 满足关于诱导的 High Prym 表示的 Putman-Wieland 猜想。
更新日期:2024-02-03
down
wechat
bug