当前位置: X-MOL 学术J. Destin. Mark. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding destination brand experience through data mining and machine learning
Journal of Destination Marketing & Management ( IF 8.9 ) Pub Date : 2024-02-03 , DOI: 10.1016/j.jdmm.2024.100862
Víctor Calderón-Fajardo , Rafael Anaya-Sánchez , Sebastian Molinillo

This research formalises a new methodology to measure and analyse Destination Brand Experience, improving upon traditional approaches by offering greater objectivity and rigour. Adopting a case study approach, five distinct and complementary types of analysis have been conducted: comprehensive sentiment analysis and topic modelling, an analysis using multiple thesauri, statistical analyses for hypothesis testing, and machine learning for classification. The methodological innovation, through the construction of thesauri, has enabled the measurement of sensory, affective, intellectual, and behavioural dimensions in unique and emblematic attractions, experiences, and transportation within a tourist destination, based on visitor reviews. This new approach allows tourism professionals and destination managers to identify areas for improvement and develop strategies to enhance tourist satisfaction. The findings suggest that there are significant differences in the relationships between specific dimensions and that gender and culture moderate or impact these relationships.

中文翻译:

通过数据挖掘和机器学习了解目的地品牌体验

这项研究正式确立了一种衡量和分析目的地品牌体验的新方法,通过提供更大的客观性和严谨性来改进传统方法。采用案例研究方法,进行了五种不同且互补的分析类型:综合情感分析和主题建模、使用多个叙词表的分析、假设检验的统计分析以及用于分类的机器学习。通过构建同义词库,方法论上的创新使得能够根据游客的评论,对旅游目的地内独特和标志性景点、体验和交通的感官、情感、智力和行为维度进行测量。这种新方法使旅游专业人士和目的地管理者能够确定需要改进的领域并制定提高游客满意度的策略。研究结果表明,特定维度之间的关系存在显着差异,并且性别和文化调节或影响这些关系。
更新日期:2024-02-03
down
wechat
bug