在本研究中,使用化学镀模板沉积技术在多孔聚碳酸酯(PC)径迹蚀刻膜(TeMs)内合成铜(Cu)和氧化镍(Ni 2 O 3 )微管(MT),以获得Cu@PC和Ni 2分别为O 3 @PC复合膜。原始 PC TeM 的纳米通道孔密度为 4 × 10 7 个孔/cm 2 ,平均孔径为 400 ± 13 nm。使用 Ni 2 O 3 @PC 模板通过两步沉积工艺合成了混合复合材料,将 Cu 和 Ni 2 O 3结合在 PC 基体中。对所得复合结构 (Cu/Ni 2 O 3 @PC) 的分析证实了 CuNi (97.3%) 和 CuO (2.7%) 晶相的存在。通过扫描电子显微镜(SEM)、能量色散X射线光谱(EDX)、X射线衍射(XRD)分析和原子力显微镜(AFM)对合成的催化剂进行了表征。在光降解评估中,Cu/Ni 2 O 3 @PC混合复合材料表现出更高的光催化活性,在紫外光照射下诺氟沙星(NOR)的降解率达到59%。该性能超过了 Ni 2 O 3 @PC 和 Cu@PC 复合材料。 从水溶液中最大程度去除 NOR 的最佳 pH 确定为 pH 5,反应时间为 180 分钟。在这些复合材料存在下,NOR 的降解遵循 Langmuir-Hinshelwood 机制和伪一级动力学模型。还对催化剂的可重复使用性进行了 10 次连续运行的研究,无需任何活化或再生处理。 Cu@PC膜催化剂在第2次测试循环后表现出降解效率显着下降,最终在第10次循环后仅催化10%的NOR。相比之下,基于 Ni 2 O 3 @PC 的催化剂在所有 10 次运行中表现出更稳定的 NOR 降解效率,在最终测试期间观察到 27% 的 NOR 去除率。值得注意的是,Cu/Ni 2 O 3 @PC混合复合材料即使在循环使用4次后仍保持较高的活性。降解效率呈现逐渐下降的趋势,第6次运行后下降了17%,到第10次循环时NOR累计去除了35%。总体而言,研究结果表明,Cu/Ni 2 O 3 @PC 混合复合膜可能代表了在减轻水生环境中抗生素污染的不利影响方面取得的进步,并为可持续水处理实践带来了重大前景。
"点击查看英文标题和摘要"
Effect of copper doping on the photocatalytic performance of Ni2O3@PC membrane composites in norfloxacin degradation
In this study, copper (Cu) and nickel oxide (Ni2O3) microtubes (MTs) were synthesized using an electroless template deposition technique within porous polycarbonate (PC) track-etched membranes (TeMs) to obtain Cu@PC and Ni2O3@PC composite membranes, respectively. The pristine PC TeMs featured nanochannels with a pore density of 4 × 107 pores per cm2 and an average pore diameter of 400 ± 13 nm. The synthesis of a mixed composite, combining Cu and Ni2O3 within the PC matrix, was achieved through a two-step deposition process using a Ni2O3@PC template. An analysis of the resultant composite structure (Cu/Ni2O3@PC) confirmed the existence of CuNi (97.3%) and CuO (2.7%) crystalline phases. The synthesized catalysts were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). In photodegradation assessments, the Cu/Ni2O3@PC mixed composite demonstrated higher photocatalytic activity, achieving a substantial 59% degradation of norfloxacin (NOR) under UV light irradiation. This performance surpassed that of both Ni2O3@PC and Cu@PC composites. The optimal pH for maximum NOR removal from the aqueous solution was determined to be pH 5, with a reaction time of 180 min. The degradation of NOR in the presence of these composites adhered to the Langmuir–Hinshelwood mechanism and a pseudo-first order kinetic model. The reusability of the catalysts was also investigated for 10 consecutive runs, without any activation or regeneration treatments. The Cu@PC membrane catalyst demonstrated a marked decline in degradation efficiency after the 2nd test cycle, ultimately catalyzing only 10% of NOR after the 10th cycle. In contrast, the Ni2O3@PC based catalyst demonstrated a more stable NOR degradation efficiency throughout all 10 runs, with 27% NOR removal observed during the final test. Remarkably, the catalytic performance of the Cu/Ni2O3@PC mixed composite remained highly active even after being recycled 4 times. The degradation efficiency exhibited a gradual reduction, with a 17% decrease after the 6th run and a cumulative 35% removal of NOR achieved by the 10th cycle. Overall, the findings indicate that Cu/Ni2O3@PC mixed composite membranes may represent an advancement in the quest to mitigate the adverse effects of antibiotic pollution in aquatic environments and hold significant promise for sustainable water treatment practices.