Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A machine learning algorithm for peripheral artery disease prognosis using biomarker data
iScience ( IF 4.6 ) Pub Date : 2024-02-01 , DOI: 10.1016/j.isci.2024.109081 Ben Li 1, 2, 3, 4 , Farah Shaikh 2 , Abdelrahman Zamzam 2 , Muzammil H Syed 2 , Rawand Abdin 5 , Mohammad Qadura 1, 2, 3, 6
iScience ( IF 4.6 ) Pub Date : 2024-02-01 , DOI: 10.1016/j.isci.2024.109081 Ben Li 1, 2, 3, 4 , Farah Shaikh 2 , Abdelrahman Zamzam 2 , Muzammil H Syed 2 , Rawand Abdin 5 , Mohammad Qadura 1, 2, 3, 6
Affiliation
Peripheral artery disease (PAD) biomarkers have been studied in isolation; however, an algorithm that considers a protein panel to inform PAD prognosis may improve predictive accuracy. Biomarker-based prediction models were developed and evaluated using a model development (n = 270) and prospective validation cohort (n = 277). Plasma concentrations of 37 proteins were measured at baseline and the patients were followed for 2 years. The primary outcome was 2-year major adverse limb event (MALE; composite of vascular intervention or major amputation). Of the 37 proteins tested, 6 were differentially expressed in patients with vs. without PAD (ADAMTS13, ICAM-1, ANGPTL3, Alpha 1-microglobulin, GDF15, and endostatin). Using 10-fold cross-validation, we developed a random forest machine learning model that accurately predicts 2-year MALE in a prospective validation cohort of PAD patients using a 6-protein panel (AUROC 0.84). This algorithm can support PAD risk stratification, informing clinical decisions on further vascular evaluation and management.
中文翻译:
使用生物标志物数据预测外周动脉疾病的机器学习算法
外周动脉疾病(PAD)生物标志物已被单独研究;然而,考虑蛋白质组来告知 PAD 预后的算法可能会提高预测准确性。使用模型开发 (n = 270) 和前瞻性验证队列 (n = 277) 开发和评估基于生物标志物的预测模型。在基线时测量了 37 种蛋白质的血浆浓度,并对患者进行了 2 年的随访。主要结局是 2 年主要不良肢体事件(MALE;血管介入或主要截肢的复合)。在测试的 37 种蛋白质中,有 6 种在 PAD 患者与非 PAD 患者中存在差异表达(ADAMTS13、ICAM-1、ANGPTL3、Alpha 1-微球蛋白、GDF15 和内皮抑素)。通过 10 倍交叉验证,我们开发了一种随机森林机器学习模型,该模型使用 6 蛋白组 (AUROC 0.84) 准确预测 PAD 患者前瞻性验证队列中的 2 年 MALE。该算法可以支持 PAD 风险分层,为进一步血管评估和管理的临床决策提供信息。
更新日期:2024-02-01
中文翻译:
使用生物标志物数据预测外周动脉疾病的机器学习算法
外周动脉疾病(PAD)生物标志物已被单独研究;然而,考虑蛋白质组来告知 PAD 预后的算法可能会提高预测准确性。使用模型开发 (n = 270) 和前瞻性验证队列 (n = 277) 开发和评估基于生物标志物的预测模型。在基线时测量了 37 种蛋白质的血浆浓度,并对患者进行了 2 年的随访。主要结局是 2 年主要不良肢体事件(MALE;血管介入或主要截肢的复合)。在测试的 37 种蛋白质中,有 6 种在 PAD 患者与非 PAD 患者中存在差异表达(ADAMTS13、ICAM-1、ANGPTL3、Alpha 1-微球蛋白、GDF15 和内皮抑素)。通过 10 倍交叉验证,我们开发了一种随机森林机器学习模型,该模型使用 6 蛋白组 (AUROC 0.84) 准确预测 PAD 患者前瞻性验证队列中的 2 年 MALE。该算法可以支持 PAD 风险分层,为进一步血管评估和管理的临床决策提供信息。