当前位置:
X-MOL 学术
›
Water Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electro-oxidation of Ibuprofen using carbon-supported SnOx-CeOx flow-anodes: The key role of high-valent metal
Water Research ( IF 11.4 ) Pub Date : 2024-01-29 , DOI: 10.1016/j.watres.2024.121229 Huachang Jin 1 , Xiaozhi Xu 2 , Renlan Liu 2 , Xiaobo Wu 3 , Xueming Chen 4 , Dongzhi Chen 5 , Xiangyong Zheng 2 , Min Zhao 2 , Yang Yu 5
Water Research ( IF 11.4 ) Pub Date : 2024-01-29 , DOI: 10.1016/j.watres.2024.121229 Huachang Jin 1 , Xiaozhi Xu 2 , Renlan Liu 2 , Xiaobo Wu 3 , Xueming Chen 4 , Dongzhi Chen 5 , Xiangyong Zheng 2 , Min Zhao 2 , Yang Yu 5
Affiliation
Exploiting electrochemically active materials as flow-anodes can effectively alleviate mass transfer restriction in an electro-oxidation system. However, the electrocatalytic activity and persistence of the conventional flow-anode materials are insufficient, resulting in limited improvement in the electro-oxidation rate and efficiency. Herein, we reported a rational strategy to substantially enhance the electrocatalytic performance of flow-anodes in electro-oxidation by introducing the redox cycle of high-valent metal in a suitable carbon substrate. The characterization suggested that the SnOx -CeOx /carbon black (CB) featured well-distributed morphology, rapid charge transfer, high oxygen evolution potential, and strong water adsorption, and stood out among three kinds of SnOx -CeOx loaded carbon materials. Mechanistic analysis indicated that the redox cycle of Ce species played a key role in accelerating the electron transfer from SnOx to CB directionally and could continuously create the electron-deficient state of the SnOx , thereby sustainably triggering the generation of ·OH. All these features enabled the resulting SnOx -CeOx /CB flow-anode to accomplish a calculated maximum kinetic constant of 0.02461 1/min, a higher current efficiency of 47.1%, and a lower energy consumption of 21.3 kWh/kg COD compared with other conventional flow-anodes reported to date. Additionally, SnOx -CeOx /CB exhibited excellent stability with extremely low leaching concentrations of Sn and Ce ions. This study provides a feasible manner for efficient water decontamination using the electro-oxidation system with SnOx -CeOx /CB.
中文翻译:
使用碳负载 SnOx-CeOx 流动阳极电氧化布洛芬:高价金属的关键作用
利用电化学活性材料作为流动阳极可以有效减轻电氧化系统中的传质限制。然而,传统流动阳极材料的电催化活性和持久性不足,导致电氧化速率和效率的提高有限。在此,我们报告了一种合理的策略,通过在合适的碳基底中引入高价金属的氧化还原循环,显着增强流动阳极在电氧化中的电催化性能。表征表明,SnOx-CeOx/炭黑(CB)具有形貌分布均匀、电荷转移快、析氧电位高、水吸附能力强等特点,在三种SnOx-CeOx负载碳材料中脱颖而出。机理分析表明,Ce物种的氧化还原循环在加速电子从SnOx到CB的定向转移方面发挥了关键作用,并且可以持续创造SnOx的缺电子态,从而持续触发·OH的生成。所有这些特性使得所得到的 SnOx-CeOx/CB 流阳极与其他传统阳极相比,能够实现计算出的最大动力学常数 0.02461 1/min、更高的电流效率 47.1% 以及更低的能耗 21.3 kWh/kg COD。迄今为止报告的流动阳极。此外,SnOx-CeOx/CB 表现出优异的稳定性,且 Sn 和 Ce 离子的浸出浓度极低。本研究为利用 SnOx-CeOx/CB 电氧化系统有效净化水体提供了一种可行的方法。
更新日期:2024-01-29
中文翻译:
使用碳负载 SnOx-CeOx 流动阳极电氧化布洛芬:高价金属的关键作用
利用电化学活性材料作为流动阳极可以有效减轻电氧化系统中的传质限制。然而,传统流动阳极材料的电催化活性和持久性不足,导致电氧化速率和效率的提高有限。在此,我们报告了一种合理的策略,通过在合适的碳基底中引入高价金属的氧化还原循环,显着增强流动阳极在电氧化中的电催化性能。表征表明,SnOx-CeOx/炭黑(CB)具有形貌分布均匀、电荷转移快、析氧电位高、水吸附能力强等特点,在三种SnOx-CeOx负载碳材料中脱颖而出。机理分析表明,Ce物种的氧化还原循环在加速电子从SnOx到CB的定向转移方面发挥了关键作用,并且可以持续创造SnOx的缺电子态,从而持续触发·OH的生成。所有这些特性使得所得到的 SnOx-CeOx/CB 流阳极与其他传统阳极相比,能够实现计算出的最大动力学常数 0.02461 1/min、更高的电流效率 47.1% 以及更低的能耗 21.3 kWh/kg COD。迄今为止报告的流动阳极。此外,SnOx-CeOx/CB 表现出优异的稳定性,且 Sn 和 Ce 离子的浸出浓度极低。本研究为利用 SnOx-CeOx/CB 电氧化系统有效净化水体提供了一种可行的方法。