当前位置: X-MOL 学术Combinatorica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Upper Bound for the Height of a Tree with a Given Eigenvalue
Combinatorica ( IF 1.0 ) Pub Date : 2024-02-02 , DOI: 10.1007/s00493-023-00071-2
Artūras Dubickas

In this paper we prove that every totally real algebraic integer \(\lambda \) of degree \(d \ge 2\) occurs as an eigenvalue of some tree of height at most \(d(d+1)/2+3\). In order to prove this, for a given algebraic number \(\alpha \ne 0\), we investigate an additive semigroup that contains zero and is closed under the map \(x \mapsto \alpha /(1-x)\) for \(x \ne 1\). The problem of finding the smallest such semigroup seems to be of independent interest.



中文翻译:

给定特征值的树高度的上限

在本文中,我们证明每个度为\( d \ge 2\) 的全实代数整数 \(\lambda \)作为某个高度最多为\(d(d+1)/2+3的树的特征值出现\)。为了证明这一点,对于给定的代数数\(\alpha \ne 0\),我们研究一个包含零且在映射\(x \mapsto \alpha /(1-x)\)下闭合的加法半群对于\(x \ne 1\)。找到最小的这样的半群的问题似乎是具有独立意义的。

更新日期:2024-02-02
down
wechat
bug