当前位置: X-MOL 学术Geom. Funct. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Two Rigidity Results for Stable Minimal Hypersurfaces
Geometric and Functional Analysis ( IF 2.4 ) Pub Date : 2024-02-01 , DOI: 10.1007/s00039-024-00662-1
Giovanni Catino , Paolo Mastrolia , Alberto Roncoroni

The aim of this paper is to prove two results concerning the rigidity of complete, immersed, orientable, stable minimal hypersurfaces: we show that they are hyperplane in R4, while they do not exist in positively curved closed Riemannian (n+1)-manifold when n≤5; in particular, there are no stable minimal hypersurfaces in Sn+1 when n≤5. The first result was recently proved also by Chodosh and Li, and the second is a consequence of a more general result concerning minimal surfaces with finite index. Both theorems rely on a conformal method, inspired by a classical work of Fischer-Colbrie.



中文翻译:

稳定最小超曲面的两个刚度结果

本文的目的是证明关于完全、浸没、可定向、稳定最小超曲面的刚度的两个结果:我们证明它们在R 4中是超平面,而在正曲闭黎曼 ( n +1)-中不存在。n ≤ 5时的流形;特别是,当n ≤ 5 时, S n +1中不存在稳定的最小超曲面。第一个结果最近也被 Chodosh 和 Li 证明,第二个结果是关于具有有限指数的最小曲面的更一般结果的结果。这两个定理都依赖于保形方法,其灵感来自 Fischer-Colbrie 的经典著作。

更新日期:2024-02-01
down
wechat
bug