当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Intergrating Hollow Multishelled Structure and High Entropy Engineering toward Enhanced Mechano-Electrochemical Properties in Lithium Battery
Advanced Materials ( IF 27.4 ) Pub Date : 2024-02-01 , DOI: 10.1002/adma.202312583 Xuefeng Liu 1 , Yingjie Yu 1 , Kezhuo Li 1 , Yage Li 1 , Xiaohan Li 1 , Zhen Yuan 1 , Hang Li 1 , Haijun Zhang 1 , Mingxing Gong 2 , Weiwei Xia 3 , Yaping Deng 4 , Wen Lei 1, 5
Advanced Materials ( IF 27.4 ) Pub Date : 2024-02-01 , DOI: 10.1002/adma.202312583 Xuefeng Liu 1 , Yingjie Yu 1 , Kezhuo Li 1 , Yage Li 1 , Xiaohan Li 1 , Zhen Yuan 1 , Hang Li 1 , Haijun Zhang 1 , Mingxing Gong 2 , Weiwei Xia 3 , Yaping Deng 4 , Wen Lei 1, 5
Affiliation
Hollow multishelled structures (HoMSs) are attracting great interest in lithium-ion batteries as the conversion anodes, owing to their superior buffering effect and mechanical stability. Given the synthetic challenges, especially elemental diffusion barrier in the multimetal combinations, this complex structure design has been realized in low- and medium-entropy compounds so far. It means that poor reaction reversibility and low intrinsic conductivity remain largely unresolved. Here, a hollow multishelled (LiFeZnNiCoMn)3O4 high entropy oxide (HEO) is developed through integrating molecule and microstructure engineering. As expected, the HoMS design exhibits significant targeting functionality, yielding satisfactory structure and cycling stability. Meanwhile, the abundant oxygen defects and optimized electronic structure of HEO accelerate the lithiation kinetics, while the retention of the parent lattice matrix enables reversible lithium storage, which is validated by rigorous in situ tests and theoretical simulations. Benefiting from these combined properties, such hollow multishelled HEO anode can deliver a specific capacity of 967 mAh g−1 (89% capacity retention) after 500 cycles at 0.5 A g−1. The synergistic lattice and volume stability showcased in this work holds great promise in guiding the material innovations for the next-generation energy storage devices.
中文翻译:
集成中空多壳结构和高熵工程以增强锂电池的机械电化学性能
中空多壳结构(HoMS)由于其优异的缓冲效果和机械稳定性,作为转换阳极引起了锂离子电池的极大兴趣。考虑到合成挑战,特别是多金属组合中的元素扩散势垒,这种复杂的结构设计迄今为止已在低熵和中熵化合物中实现。这意味着反应可逆性差和本征电导率低在很大程度上仍未得到解决。在这里,通过集成分子和微结构工程开发了一种空心多壳(LiFeZnNiCoMn) 3 O 4高熵氧化物(HEO)。正如预期的那样,HoMS 设计表现出显着的靶向功能,产生令人满意的结构和循环稳定性。同时,HEO丰富的氧缺陷和优化的电子结构加速了锂化动力学,同时保留母晶格基体实现了可逆的锂存储,这一点通过严格的原位测试和理论模拟得到了验证。受益于这些综合特性,这种中空多壳HEO阳极在0.5 A g -1下循环500次后可以提供967 mAh g -1的比容量(89%容量保持率)。这项工作中展示的协同晶格和体积稳定性在指导下一代储能设备的材料创新方面具有广阔的前景。
更新日期:2024-02-01
中文翻译:
集成中空多壳结构和高熵工程以增强锂电池的机械电化学性能
中空多壳结构(HoMS)由于其优异的缓冲效果和机械稳定性,作为转换阳极引起了锂离子电池的极大兴趣。考虑到合成挑战,特别是多金属组合中的元素扩散势垒,这种复杂的结构设计迄今为止已在低熵和中熵化合物中实现。这意味着反应可逆性差和本征电导率低在很大程度上仍未得到解决。在这里,通过集成分子和微结构工程开发了一种空心多壳(LiFeZnNiCoMn) 3 O 4高熵氧化物(HEO)。正如预期的那样,HoMS 设计表现出显着的靶向功能,产生令人满意的结构和循环稳定性。同时,HEO丰富的氧缺陷和优化的电子结构加速了锂化动力学,同时保留母晶格基体实现了可逆的锂存储,这一点通过严格的原位测试和理论模拟得到了验证。受益于这些综合特性,这种中空多壳HEO阳极在0.5 A g -1下循环500次后可以提供967 mAh g -1的比容量(89%容量保持率)。这项工作中展示的协同晶格和体积稳定性在指导下一代储能设备的材料创新方面具有广阔的前景。