当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
2D Layered MnO2 with an Ultralarge Interlayer Spacing for Aqueous Zinc Ion Batteries
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2024-02-01 , DOI: 10.1021/acsaem.3c02940
Aina Zhang 1 , Xiuxiu Yin 2 , Xu Zhang 1 , Junjie Ba 1 , Junpeng Li 1 , Yingjin Wei 1, 3 , Yizhan Wang 1, 3
Affiliation  

Delta MnO2 (δ-MnO2) is a promising cathode material for aqueous zinc ion batteries. However, the electrochemical performance of a δ-MnO2 cathode is severely limited by sluggish reaction kinetics, low electronic conductivity, and inferior structural stability. In this study, we propose a simple and general approach for the preintercalation of large-sized organic cations between the layers of δ-MnO2. Our method is based on layer-by-layer electrostatic assembly of colloidal building blocks consisting of MnO2 nanosheets and various organic cations. The preintercalation results in unprecedented expansion of the interlayer spacing to more than 1.0 nm, thereby significantly enhancing the kinetics of ionic diffusion. These introduced cations act as supportive pillars and contribute to the modulation of the electronic structure of δ-MnO2, ultimately enhancing its structural stability and electronic conductivity. Electrochemical evaluations demonstrate superior performance in terms of capacity, rate capability, and cycling stability compared with that of a pristine δ-MnO2 cathode. The findings provide valuable insights into the design of high-performance cathode materials with improved ion diffusion kinetics and superior energy storage capabilities.

中文翻译:

用于水系锌离子电池的超大层间距二维层状MnO2

Delta MnO 2 (δ-MnO 2 )是一种很有前景的水系锌离子电池正极材料。然而,δ-MnO 2阴极的电化学性能受到缓慢的反应动力学、低电子电导率和较差的结构稳定性的严重限制。在这项研究中,我们提出了一种简单而通用的方法,用于在 δ-MnO 2层之间预插入大尺寸有机阳离子。我们的方法基于由 MnO 2纳米片和各种有机阳离子组成的胶体构件的逐层静电组装。预插层导致层间距空前扩大至超过 1.0 nm,从而显着增强离子扩散动力学。这些引入的阳离子充当支撑柱,有助于调节δ-MnO 2的电子结构,最终增强其结构稳定性和电子电导率。电化学评估表明,与原始的δ-MnO 2正极相比,在容量、倍率性能和循环稳定性方面具有优越的性能。这些发现为具有改进的离子扩散动力学和卓越的能量存储能力的高性能阴极材料的设计提供了宝贵的见解。
更新日期:2024-02-01
down
wechat
bug