当前位置: X-MOL 学术Food Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
1,3-Dioleoyl-2-palmitoyl-glycerol and 1-oleoyl-2-palmitoyl-3-linoleoyl-glycerol: Structure-function relationship, triacylglycerols preparation, nutrition value
Food Chemistry ( IF 8.5 ) Pub Date : 2024-01-26 , DOI: 10.1016/j.foodchem.2024.138560
Teng Wei 1 , Abdul Mueed 1 , Ting Luo 2 , Yong Sun 2 , Bing Zhang 2 , Liufeng Zheng 2 , Zeyuan Deng 3 , Jing Li 3
Affiliation  

Based on multivariate statistics, this review compared major triacylglycerols (TAGs) in animal milk and human milk fat from China and other countries. Human milk fat differs from animal milk fat in that it has longer acyl chains and higher concentrations of 1,3-dioleoyl-2-palmitoyl-glycerol (O-P-O) and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (O-P-L). O-P-L is a significant and distinct TAG in human milk fat, particularly in China. 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) is human milk’s major triglyceride molecule of O-P-L, accounting for more than 70%. As a result, OPL has piqued the interest of Chinese academics. The synthesis process and nutritional outcomes of OPL have been studied, including changes in gut microbiota, serum lipid composition, improved fatty acid and calcium absorption, and increased total bile acid levels. However, current OPL research is limited. Therefore, this review discussed enzymatic preparation of 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and OPL and their nutritional and physiological activity to direct future research direction for sn-2 palmitate and OPL.

更新日期:2024-01-30
down
wechat
bug