当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
MOF-Derived Bimetallic Selenide CoNiSe2 Nanododecahedrons Encapsulated in Porous Carbon Matrix as Advanced Anodes for Lithium-Ion Batteries
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-01-29 , DOI: 10.1021/acsami.3c18236 Qing Han 1 , Weifan Zhang 1 , Limin Zhu 1 , Minlu Liu 1 , Changle Xia 1 , Lingling Xie 2 , Xuejing Qiu 2 , Yongmei Xiao 1 , Lanhua Yi 3 , Xiaoyu Cao 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-01-29 , DOI: 10.1021/acsami.3c18236 Qing Han 1 , Weifan Zhang 1 , Limin Zhu 1 , Minlu Liu 1 , Changle Xia 1 , Lingling Xie 2 , Xuejing Qiu 2 , Yongmei Xiao 1 , Lanhua Yi 3 , Xiaoyu Cao 1
Affiliation
Transition metal selenides have received considerable attention as promising candidates for lithium-ion battery (LIB) anode materials due to their high theoretical capacity and safety characteristics. However, their commercial viability is hampered by insufficient conductivity and volumetric fluctuations during cycling. To address these issues, we have utilized bimetallic metal–organic frameworks to fabricate CoNiSe2/C nanodecahedral composites with a high specific surface area, abundant pore structures, and a surface-coated layer of the carbon-based matrix. The optimized material, CoNiSe2/C-700, exhibited impressive Li+ storage performance with an initial discharge specific capacity of 2125.5 mA h g–1 at 0.1 A g–1 and a Coulombic efficiency of 98% over cycles. Even after 1000 cycles at 1.0 A g–1, a reversible discharge specific capacity of 549.9 mA h g–1 was achieved. The research highlights the synergistic effect of bimetallic selenides, well-defined nanodecahedral structures, stable carbon networks, and the formation of smaller particles during initial cycling, all of which contribute to improved electronic performance, reduced volume change, increased Li+ storage active sites, and shorter Li+ diffusion paths. In addition, the pseudocapacitance behavior contributes significantly to the high energy storage of Li+. These features facilitate rapid charge transfer and help maintain a stable solid–electrolyte interphase layer, which ultimately leads to an excellent electrochemical performance. This work provides a viable approach for fabricating bimetallic selenides as anode materials for high-performance LIBs through architectural engineering and compositional tailoring.
中文翻译:
MOF 衍生的双金属硒化物 CoNiSe2 纳米十二面体封装在多孔碳基质中作为锂离子电池的高级阳极
过渡金属硒化物由于其高理论容量和安全特性,作为锂离子电池(LIB)负极材料的有前景的候选材料而受到广泛关注。然而,它们的商业可行性受到循环过程中电导率不足和体积波动的阻碍。为了解决这些问题,我们利用双金属金属有机框架制备了CoNiSe 2 /C纳米十面体复合材料,该复合材料具有高比表面积、丰富的孔隙结构和碳基基体的表面涂层。优化后的材料 CoNiSe 2 /C-700 表现出令人印象深刻的 Li +存储性能,在 0.1 A g –1电流下的初始放电比容量为 2125.5 mA hg –1 ,循环库仑效率为 98%。即使在 1.0 A g –1下循环 1000 次后,仍可实现 549.9 mA hg –1的可逆放电比容量。该研究强调了双金属硒化物、明确的纳米十面体结构、稳定的碳网络以及初始循环过程中较小颗粒的形成的协同效应,所有这些都有助于提高电子性能,减少体积变化,增加Li +存储活性位点,和更短的Li +扩散路径。此外,赝电容行为对Li +的高能量存储有显着贡献。这些特性促进快速电荷转移,并有助于维持稳定的固体电解质界面层,最终带来优异的电化学性能。 这项工作提供了一种通过建筑工程和成分定制制造双金属硒化物作为高性能锂离子电池阳极材料的可行方法。
更新日期:2024-01-29
中文翻译:
MOF 衍生的双金属硒化物 CoNiSe2 纳米十二面体封装在多孔碳基质中作为锂离子电池的高级阳极
过渡金属硒化物由于其高理论容量和安全特性,作为锂离子电池(LIB)负极材料的有前景的候选材料而受到广泛关注。然而,它们的商业可行性受到循环过程中电导率不足和体积波动的阻碍。为了解决这些问题,我们利用双金属金属有机框架制备了CoNiSe 2 /C纳米十面体复合材料,该复合材料具有高比表面积、丰富的孔隙结构和碳基基体的表面涂层。优化后的材料 CoNiSe 2 /C-700 表现出令人印象深刻的 Li +存储性能,在 0.1 A g –1电流下的初始放电比容量为 2125.5 mA hg –1 ,循环库仑效率为 98%。即使在 1.0 A g –1下循环 1000 次后,仍可实现 549.9 mA hg –1的可逆放电比容量。该研究强调了双金属硒化物、明确的纳米十面体结构、稳定的碳网络以及初始循环过程中较小颗粒的形成的协同效应,所有这些都有助于提高电子性能,减少体积变化,增加Li +存储活性位点,和更短的Li +扩散路径。此外,赝电容行为对Li +的高能量存储有显着贡献。这些特性促进快速电荷转移,并有助于维持稳定的固体电解质界面层,最终带来优异的电化学性能。 这项工作提供了一种通过建筑工程和成分定制制造双金属硒化物作为高性能锂离子电池阳极材料的可行方法。