当前位置:
X-MOL 学术
›
Adv. Opt. Photon.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Silicon photonics for the visible and near-infrared spectrum
Advances in Optics and Photonics ( IF 25.2 ) Pub Date : 2024-01-26 , DOI: 10.1364/aop.501846 Joyce K. S. Poon 1 , Alperen Govdeli 1 , Ankita Sharma 1 , Xin Mu 1 , Fu-Der Chen 1 , Tianyuan Xue 1 , Tianyi Liu 1
Advances in Optics and Photonics ( IF 25.2 ) Pub Date : 2024-01-26 , DOI: 10.1364/aop.501846 Joyce K. S. Poon 1 , Alperen Govdeli 1 , Ankita Sharma 1 , Xin Mu 1 , Fu-Der Chen 1 , Tianyuan Xue 1 , Tianyi Liu 1
Affiliation
Emerging applications in quantum information, microscopy, biosensing, depth sensing, and augmented reality demand miniaturized components in the visible (VIS) and near-infrared (NIR) spectrum with wavelengths between 380 and 1100 nm. Foundry silicon photonics, which has been optimized for telecommunication wavelengths, can be adapted to this wavelength range. In this article, we review recent developments in silicon photonics for VIS and NIR wavelengths, with a focus on platforms, devices, and photonic circuits fabricated in foundries. Foundries enable the creation of complex circuitry at a wafer scale. Platforms based on silicon nitride and aluminum oxide wave-guides compatible with complementary metal–oxide–semiconductor (CMOS) foundries are becoming available. As a result, highly functional photonic circuits are becoming possible. The key challenges are low-loss waveguides, efficient input/output coupling, sensitive detectors, and heterogeneous integration of lasers and modulators, particularly those using lithium niobate and other electro-optic materials. These elements, already developed for telecommunications, require further development for λ < 1100 nm. As short-wavelength silicon photonics technology advances, photonic integrated circuits can address a broader scope of applications beyond O- and C-band communication.
中文翻译:
用于可见光和近红外光谱的硅光子学
量子信息、显微镜、生物传感、深度传感和增强现实等新兴应用需要波长在 380 至 1100 nm 之间的可见光 (VIS) 和近红外 (NIR) 光谱中的小型化组件。铸造硅光子学已针对电信波长进行了优化,可以适应该波长范围。在本文中,我们回顾了可见光和近红外波长硅光子学的最新发展,重点关注代工厂制造的平台、设备和光子电路。铸造厂能够在晶圆级上创建复杂的电路。基于氮化硅和氧化铝波导、与互补金属氧化物半导体 (CMOS) 代工厂兼容的平台正在变得可用。因此,高性能的光子电路正在成为可能。主要挑战是低损耗波导、高效输入/输出耦合、灵敏探测器以及激光器和调制器的异构集成,特别是那些使用铌酸锂和其他电光材料的激光器和调制器。这些元件已经为电信开发,需要针对λ < 1100 nm 进行进一步开发。随着短波长硅光子技术的进步,光子集成电路可以满足 O 和 C 波段通信之外更广泛的应用范围。
更新日期:2024-01-26
中文翻译:
用于可见光和近红外光谱的硅光子学
量子信息、显微镜、生物传感、深度传感和增强现实等新兴应用需要波长在 380 至 1100 nm 之间的可见光 (VIS) 和近红外 (NIR) 光谱中的小型化组件。铸造硅光子学已针对电信波长进行了优化,可以适应该波长范围。在本文中,我们回顾了可见光和近红外波长硅光子学的最新发展,重点关注代工厂制造的平台、设备和光子电路。铸造厂能够在晶圆级上创建复杂的电路。基于氮化硅和氧化铝波导、与互补金属氧化物半导体 (CMOS) 代工厂兼容的平台正在变得可用。因此,高性能的光子电路正在成为可能。主要挑战是低损耗波导、高效输入/输出耦合、灵敏探测器以及激光器和调制器的异构集成,特别是那些使用铌酸锂和其他电光材料的激光器和调制器。这些元件已经为电信开发,需要针对λ < 1100 nm 进行进一步开发。随着短波长硅光子技术的进步,光子集成电路可以满足 O 和 C 波段通信之外更广泛的应用范围。