当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ligand-Confinement-Induced Catalyst–Support Interface Interactions in Co3O4-Supported RuO2 for Long-Term Stable Acidic Oxygen Evolution Reaction
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-01-27 , DOI: 10.1021/acssuschemeng.3c06895
Ruo-Yao Fan 1 , Haijun Liu 1 , Jing-Ke Ren 1 , Yichuan Li 1 , Jun Nan 2 , Yulu Zhou 1 , Chun-Ying Liu 1 , Yong-Ming Chai 1 , Bin Dong 1
Affiliation  

The proton exchange membrane (PEM) water hydrolyzer is crucial to promoting the sustainable development of hydrogen energy and facilitating large-scale energy transformation. However, achieving sustained and stable oxygen evolution reaction (OER) in acidic solutions presents a significant challenge for noniridium based electrocatalysts. Herein, we develop a Co3O4-supported RuO2 electrocatalyst with optimized catalyst–support interface interactions for breaking the activity–stability trade-off relationship in acidic OER. Through detailed electrochemical experiments and characterization analysis, we demonstrate that the crystal growth of Co3O4 support can be precisely regulated by modifying the ligand layer-confined domain of cobalt-based metal–organic frameworks (Co-MOF) precursor, thereby optimizing the RuO2/Co3O4 interface. Due to the weakened self-sacrifice effect of Co3O4, active heterogeneous interface electron interaction and impeccable support crystal coating effect, the acidic OER stability of RuO2/Co3O4–B3DC is significantly improved compared with RuO2 while preserving intrinsic activity. Theoretical modeling suggests that the formation of a RuO2/Co3O4 catalyst–support interface optimizes the adsorption energy of oxygen intermediates, promoting the oxygen evolution process. Additionally, the RuO2/Co3O4–B3DC anode demonstrates promising potential application in PEM electrolyzers and a variety of renewable energy-driven electrolytic cells.

中文翻译:

Co3O4 负载 RuO2 中配体限制诱导的催化剂-载体界面相互作用,用于长期稳定的酸性析氧反应

质子交换膜(PEM)水解器对于推动氢能可持续发展、促进大规模能源转型至关重要。然而,在酸性溶液中实现持续稳定的析氧反应(OER)对非铱基电催化剂提出了重大挑战。在此,我们开发了一种Co 3 O 4负载的RuO 2电催化剂,其具有优化的催化剂-载体界面相互作用,以打破酸性OER中的活性-稳定性权衡关系。通过详细的电化学实验和表征分析,我们证明通过修饰钴基金属有机骨架(Co-MOF)前驱体的配体层限制域可以精确调控Co 3 O 4载体的晶体生长,从而优化Co 3 O 4 载体的晶体生长。 RuO 2 /Co 3 O 4界面。由于Co 3 O 4减弱的自牺牲效应、活跃的异质界面电子相互作用以及无可挑剔的支撑晶体包覆效果,RuO 2 /Co 3 O 4 –B 3 DC的酸性OER稳定性较RuO 2显着提高,同时保留内在活性。理论模型表明,RuO 2 /Co 3 O 4催化剂-载体界面的形成优化了氧中间体的吸附能,促进了析氧过程。此外,RuO 2 /Co 3 O 4 –B 3直流阳极在质子交换膜电解槽和各种可再生能源驱动的电解槽中具有广阔的应用前景。
更新日期:2024-01-27
down
wechat
bug