Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2024-01-26 , DOI: 10.1016/j.jctb.2024.01.003 Lior Gishboliner , Zhihan Jin , Benny Sudakov
The graph removal lemma is a fundamental result in extremal graph theory which says that for every fixed graph H and , if an n-vertex graph G contains edge-disjoint copies of H then G contains copies of H for some . The current proofs of the removal lemma give only very weak bounds on , and it is also known that is not polynomial in ε unless H is bipartite. Recently, Fox and Wigderson initiated the study of minimum degree conditions guaranteeing that depends polynomially or linearly on ε. In this paper we answer several questions of Fox and Wigderson on this topic.
中文翻译:
最小程度移除引理阈值
图移除引理是极值图论的基本结果,它表示对于每个固定图H和,如果一个n顶点图G包含H的边不相交副本,然后G包含某些人的H副本。当前移除引理的证明仅给出了非常弱的界限,并且还已知除非H是二部的,否则不是ε中的多项式。最近,Fox 和 Wigderson 发起了最低学位条件的研究,以保证多项式或线性取决于ε。在本文中,我们回答了 Fox 和 Wigderson 关于此主题的几个问题。