当前位置: X-MOL 学术J. Comb. Theory B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The minimum degree removal lemma thresholds
Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2024-01-26 , DOI: 10.1016/j.jctb.2024.01.003
Lior Gishboliner , Zhihan Jin , Benny Sudakov

The graph removal lemma is a fundamental result in extremal graph theory which says that for every fixed graph H and ε>0, if an n-vertex graph G contains εn2 edge-disjoint copies of H then G contains δnv(H) copies of H for some δ=δ(ε,H)>0. The current proofs of the removal lemma give only very weak bounds on δ(ε,H), and it is also known that δ(ε,H) is not polynomial in ε unless H is bipartite. Recently, Fox and Wigderson initiated the study of minimum degree conditions guaranteeing that δ(ε,H) depends polynomially or linearly on ε. In this paper we answer several questions of Fox and Wigderson on this topic.



中文翻译:

最小程度移除引理阈值

图移除引理是极值图论的基本结果,它表示对于每个固定图Hε>0,如果一个n顶点图G包含εn2H的边不相交副本,然后G包含δnvH某些人的H副本δ=δε,H>0。当前移除引理的证明仅给出了非常弱的界限δε,H,并且还已知δε,H除非H是二部的,否则不是ε中的多项式。最近,Fox 和 Wigderson 发起了最低学位条件的研究,以保证δε,H多项式或线性取决于ε。在本文中,我们回答了 Fox 和 Wigderson 关于此主题的几个问题。

更新日期:2024-01-28
down
wechat
bug