上转换纳米颗粒(UCNP)由于能量转移上转换(ETU)机制而具有独特的非线性光学特性,因此在生物光子学和能量收集领域得到了广泛的应用。然而,由于缺乏解释激发光束轮廓畸变的方法,使用内部量子产率 (iQY) 准确表征 UCNP 的功率密度相关效率具有挑战性。这种限制阻碍了针对不同应用的最佳 UCNP 的工程设计。为了解决这个问题,这项工作提出了一种基于通用解析速率方程模型的新型光束轮廓补偿策略,能够评估任意阶 ETU 过程(例如 ETU2、ETU3 等)的 iQY。该方法用于表征 Yb-Tm 共掺杂核壳 β-UCNP 的主发射峰(474 nm、650 nm 和 804 nm)对应的 ETU2 和 ETU3 过程。通过这种方法,确定了跃迁功率密度点(界定了上转换发光 (UCL) 的不同非线性区域)和饱和 iQY 值(在跃迁点以上的高激发功率密度下达到)。 ETU2过程表现出单个转变功率密度点,表示为ρ 2 ,而ETU3过程涉及两个转变点, ρ 2和ρ 3 。通过补偿光束轮廓,我们评估了宽动态范围的激励功率密度(高达 10 5 W cm -2 )内各个线的 iQY,涵盖 UCL 的非线性和线性状态。 本研究介绍了一种准确表征 UCNP iQY 的有价值的方法,有助于更深入地了解上转换及其性能。通过解决激励光束轮廓失真问题,该方法可以对功率密度相关的 iQY 进行全面且可靠的评估。结果强调了这种光束轮廓补偿策略的适用性和有效性,可用于广泛的 UCNP。这一进步为 UCNP 在各个领域(尤其是生物光子学)的定制设计和应用开辟了新的途径。
"点击查看英文标题和摘要"
Beam-profile compensation for quantum yield characterisation of Yb–Tm codoped upconverting nanoparticles emitting at 474 nm, 650 nm and 804 nm
Upconverting nanoparticles (UCNPs) have found widespread applications in biophotonics and energy harvesting due to their unique non-linear optical properties arising from energy transfer upconversion (ETU) mechanisms. However, accurately characterising the power density-dependent efficiency of UCNPs using the internal quantum yield (iQY) is challenging due to the lack of methods that account for excitation beam-profile distortions. This limitation hinders the engineering of optimal UCNPs for diverse applications. To address this, this work present a novel beam profile compensation strategy based on a general analytical rate-equations model, enabling the evaluation of iQY for ETU processes of arbitrary order, such as ETU2, ETU3, and beyond. The method was applied to characterise the ETU2 and ETU3 processes corresponding to the main emission peaks (474 nm, 650 nm, and 804 nm) of a Yb–Tm codoped core–shell β-UCNP. Through this approach, the transition power density points (which delimit the distinct non-linear regimes of the upconversion luminescence (UCL)), and the saturation iQY values (which are reached at high excitation power densities above the transition points) were determined. The ETU2 process exhibits a single transition power density point, denoted as ρ2, while the ETU3 processes involve two transition points, ρ2 and ρ3. By compensating for the beam profile, we evaluate the iQY of individual lines across a wide dynamic range of excitation power densities (up to 105 W cm−2), encompassing both non-linear and linear regimes of UCL. This study introduces a valuable approach for accurately characterising the iQY of UCNPs, facilitating a deeper understanding of the upconversion and its performance. By addressing excitation beam-profile distortions, this method provides a comprehensive and reliable assessment of the power density-dependent iQY. The results highlight the applicability and effectiveness of this beam profile compensation strategy, which can be employed for a wide range of UCNPs. This advancement opens new avenues for the tailored design and application of UCNPs in various fields, especially for biophotonics.