当前位置:
X-MOL 学术
›
WIREs Data Mining Knowl. Discov.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A survey of autonomous monitoring systems in mental health
WIREs Data Mining and Knowledge Discovery ( IF 6.4 ) Pub Date : 2024-01-24 , DOI: 10.1002/widm.1527 Abinaya Gopalakrishnan 1, 2 , Raj Gururajan 1, 2 , Xujuan Zhou 1 , Revathi Venkataraman 2 , Ka Ching Chan 1 , Niall Higgins 1, 3
WIREs Data Mining and Knowledge Discovery ( IF 6.4 ) Pub Date : 2024-01-24 , DOI: 10.1002/widm.1527 Abinaya Gopalakrishnan 1, 2 , Raj Gururajan 1, 2 , Xujuan Zhou 1 , Revathi Venkataraman 2 , Ka Ching Chan 1 , Niall Higgins 1, 3
Affiliation
Smartphones and personal sensing technologies have made collecting data continuously and in real time feasible. The promise of pervasive sensing technologies in the realm of mental health has recently garnered increased attention. Using Artificial Intelligence methods, it is possible to forecast a person's emotional state based on contextual information such as their current location, movement patterns, and so on. As a result, conditions like anxiety, stress, depression, and others might be tracked automatically and in real-time. The objective of this research was to survey the state-of-the-art autonomous psychological health monitoring (APHM) approaches, including those that make use of sensor data, virtual chatbot communication, and artificial intelligence methods like Machine learning and deep learning algorithms. We discussed the main processing phases of APHM from the sensing layer to the application layer and an observation taxonomy deals with various observation devices, observation duration, and phenomena related to APHM. Our goal in this study includes research works pertaining to working of APHM to predict the various mental disorders and difficulties encountered by researchers working in this sector and potential application for future clinical use highlighted.
中文翻译:
心理健康自主监测系统调查
智能手机和个人传感技术使得连续、实时收集数据变得可行。普遍传感技术在心理健康领域的前景最近引起了越来越多的关注。使用人工智能方法,可以根据当前位置、运动模式等上下文信息来预测一个人的情绪状态。因此,焦虑、压力、抑郁等状况可能会被自动实时跟踪。这项研究的目的是调查最先进的自主心理健康监测 (APHM) 方法,包括利用传感器数据、虚拟聊天机器人通信以及机器学习和深度学习算法等人工智能方法的方法。我们讨论了 APHM 从感知层到应用层的主要处理阶段,以及涉及各种观测设备、观测持续时间和与 APHM 相关现象的观测分类。我们在这项研究中的目标包括与 APHM 工作相关的研究工作,以预测该领域研究人员遇到的各种精神障碍和困难,并强调未来临床使用的潜在应用。
更新日期:2024-01-25
中文翻译:
心理健康自主监测系统调查
智能手机和个人传感技术使得连续、实时收集数据变得可行。普遍传感技术在心理健康领域的前景最近引起了越来越多的关注。使用人工智能方法,可以根据当前位置、运动模式等上下文信息来预测一个人的情绪状态。因此,焦虑、压力、抑郁等状况可能会被自动实时跟踪。这项研究的目的是调查最先进的自主心理健康监测 (APHM) 方法,包括利用传感器数据、虚拟聊天机器人通信以及机器学习和深度学习算法等人工智能方法的方法。我们讨论了 APHM 从感知层到应用层的主要处理阶段,以及涉及各种观测设备、观测持续时间和与 APHM 相关现象的观测分类。我们在这项研究中的目标包括与 APHM 工作相关的研究工作,以预测该领域研究人员遇到的各种精神障碍和困难,并强调未来临床使用的潜在应用。