当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cu-MOF-Derived C-Doped CuO/Cu2O Hollow Nano-Octahedrons for Room-Temperature NO2 Sensing at the ppb Level
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2024-01-25 , DOI: 10.1021/acsanm.3c05445
Chaofan Ma 1 , Qun Yang 2 , Huiyu Su 1 , Huimin Yang 1 , Xiaoxia Wang 1 , Dawen Zeng 1
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2024-01-25 , DOI: 10.1021/acsanm.3c05445
Chaofan Ma 1 , Qun Yang 2 , Huiyu Su 1 , Huimin Yang 1 , Xiaoxia Wang 1 , Dawen Zeng 1
Affiliation
![]() |
P-type semiconductors [copper oxide (CuO) and cuprous oxide (Cu2O)] have been widely researched as good gas sensing materials due to their unique oxygen adsorption properties. In this work, C-doped CuO/Cu2O hollow nano-octahedrons have been prepared by thermal decomposition of the Cu-based metal–organic framework ([Cu3(BTC)2]n). The CuO and Cu2O nanoparticles form nano-octahedron heterojunctions by a close packing mode. A large number of active heterojunction sites were exposed, which significantly increased the adsorbed oxygen (O2–) content. Meanwhile, doping C in the lattice of the heterojunction effectively reduces the band gap of CuO/Cu2O and promotes the chemical reaction of the target gas on the surface of the material. Density functional theory calculations indicate that the CuO/Cu2O heterojunction has strong adsorption ability for NO2. Electrochemical impedance spectroscopy further reveals that C-doped CuO/Cu2O hollow nano-octahedrons-40 min heterojunction has the best electron transport performance. The sensors have good gas sensing response (22.88–50 ppm) and selectivity to nitrogen dioxide (NO2) at room temperature (28 °C). In addition, the sensor has extremely low detection, which can detect parts per billion level NO2 (20.50% to 100 ppb). It is expected to provide a reference for the development of a room-temperature NO2 sensor.
中文翻译:
Cu-MOF 衍生的 C 掺杂 CuO/Cu2O 空心纳米八面体,用于 ppb 级室温 NO2 传感
P型半导体[氧化铜(CuO)和氧化亚铜(Cu 2 O)]由于其独特的氧吸附特性而作为良好的气敏材料被广泛研究。在这项工作中,通过热分解Cu基金属有机骨架([Cu 3 (BTC) 2 ] n )制备了C掺杂的CuO/Cu 2 O中空纳米八面体。 CuO和Cu 2 O纳米颗粒通过密堆积方式形成纳米八面体异质结。大量活性异质结位点暴露出来,显着增加了吸附氧(O 2 -)含量。同时,异质结晶格中的C掺杂有效减小了CuO/Cu 2 O的带隙,促进了目标气体在材料表面的化学反应。密度泛函理论计算表明CuO/Cu 2 O异质结对NO 2具有较强的吸附能力。电化学阻抗谱进一步表明C掺杂的CuO/Cu 2 O空心纳米八面体-40 min异质结具有最佳的电子传输性能。该传感器在室温 (28 °C) 下具有良好的气体传感响应 (22.88–50 ppm) 和对二氧化氮 (NO 2 ) 的选择性。此外,该传感器具有极低的检测能力,可检测十亿分之一级别的NO 2(20.50%至100 ppb)。有望为室温NO 2传感器的开发提供参考。
更新日期:2024-01-25
中文翻译:

Cu-MOF 衍生的 C 掺杂 CuO/Cu2O 空心纳米八面体,用于 ppb 级室温 NO2 传感
P型半导体[氧化铜(CuO)和氧化亚铜(Cu 2 O)]由于其独特的氧吸附特性而作为良好的气敏材料被广泛研究。在这项工作中,通过热分解Cu基金属有机骨架([Cu 3 (BTC) 2 ] n )制备了C掺杂的CuO/Cu 2 O中空纳米八面体。 CuO和Cu 2 O纳米颗粒通过密堆积方式形成纳米八面体异质结。大量活性异质结位点暴露出来,显着增加了吸附氧(O 2 -)含量。同时,异质结晶格中的C掺杂有效减小了CuO/Cu 2 O的带隙,促进了目标气体在材料表面的化学反应。密度泛函理论计算表明CuO/Cu 2 O异质结对NO 2具有较强的吸附能力。电化学阻抗谱进一步表明C掺杂的CuO/Cu 2 O空心纳米八面体-40 min异质结具有最佳的电子传输性能。该传感器在室温 (28 °C) 下具有良好的气体传感响应 (22.88–50 ppm) 和对二氧化氮 (NO 2 ) 的选择性。此外,该传感器具有极低的检测能力,可检测十亿分之一级别的NO 2(20.50%至100 ppb)。有望为室温NO 2传感器的开发提供参考。