当前位置: X-MOL 学术ACS Appl. Nano Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-Dimensional Nitrogen-Doped Carbon Nanoskeleton Cladded with a Graphitic C3N5 Nanolayer as a Sulfur Host for Lithium–Sulfur Batteries
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2024-01-23 , DOI: 10.1021/acsanm.3c05074
Haihua Yang 1, 2 , Xiating Jia 1, 2 , Na Zhang 3 , Aojie Li 1, 2 , Minghao Jin 1, 2 , Minjie Zhou 1, 2 , Li Zhang 1, 2
Affiliation  

Active site and morphology engineering are essential for the electrochemical performance of carbon-based nanomaterials. In this study, we proposed a three-dimensional (3D) N-doped carbon skeleton cladded with a g-C3N5 nanolayer (denoted as CS/U–C3N5–K) as a sulfur host for lithium–sulfur batteries (LSBs). A 3D N-doped carbon nanoskeleton (CS/U) was presynthesized by carbonizing mixed precursors composed of chitosan and urea. The g-C3N5 nanolayer was cladded over the carbon nanoskeleton via pyrolyzing a mixture of CS/U and 3-amino-1,2,4-triazole. KOH was also introduced into the mixture to generate additional intrinsic carbon defects in CS/U–C3N5–K. The porous graphitic carbon nanoskeleton ensured good electrical conductivity and sulfur-based species penetration. The abundant nitrogen-based moieties in the carbon nanoskeleton and g-C3N5 nanolayer, as well as intrinsic carbon defects, can redistribute the electrons and offer massive active sites for the sulfur redox reaction process. The as-obtained CS/U–C3N5–K nanocomposite delivered ameliorative sulfur redox reaction kinetics, including reduced charge transfer resistance, reasonable redox polarization, enhanced LiPS chemisorption and trapping capability, and a smaller potential difference for Li2S nucleation/activation. The LSB with CS/U–C3N5–K as a sulfur host material exhibited capacities of 1076.1 and 696.8 mAh g–1 at 0.2 for the initial and 200th cycles, respectively. The CS/U–C3N5–K cathode also exhibited capacities of 624.9 and 402.9 mAh g–1 at 2C for the initial and 1000th cycles, respectively. This work offers a feasible strategy for the engineering of active sites and morphology of metal-free carbon-based nanomaterials in electrochemical energy conversion and storage fields.

中文翻译:

三维氮掺杂碳纳米骨架包覆石墨 C3N5 纳米层作为锂硫电池的硫主体

活性位点和形貌工程对于碳基纳米材料的电化学性能至关重要。在这项研究中,我们提出了一种包覆有gC 3 N 5纳米层(表示为CS/U–C 3 N 5 –K)的三维(3D)N掺杂碳骨架作为锂硫电池的硫主体( LSB)。通过碳化由壳聚糖和尿素组成的混合前体,预合成了 3D N 掺杂碳纳米骨架(CS/U)。通过热解CS/U和3-氨基-1,2,4-三唑的混合物,将gC 3 N 5纳米层包覆在碳纳米骨架上。 KOH 也被引入到混合物中,以在 CS/U–C 3 N 5 –K 中产生额外的固有碳缺陷。多孔石墨碳纳米骨架确保了良好的导电性和硫基物质的渗透。碳纳米骨架和gC 3 N 5纳米层中丰富的氮基部分以及固有的碳缺陷可以重新分配电子并为硫氧化还原反应过程提供大量活性位点。所获得的CS/U–C 3 N 5 –K纳米复合材料改善了硫氧化还原反应动力学,包括降低的电荷转移电阻、合理的氧化还原极化、增强的LiPS化学吸附和捕获能力以及较小的Li 2 S成核/电势差激活。以 CS/U–C 3 N 5 –K 作为硫主体材料的LSB在 0.2 的初始和第 200 次循环中分别表现出 1076.1 和 696.8 mAh g –1的容量。 CS/U–C 3 N 5 –K 正极在 2C 下的初始和第 1000 次循环时的容量分别为 624.9 和 402.9 mAh g –1 。这项工作为电化学能量转换和存储领域的无金属碳基纳米材料的活性位点和形态工程提供了可行的策略。
更新日期:2024-01-23
down
wechat
bug