当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting Artificial Photosynthesis: CO2 Chemisorption and S-Scheme Charge Separation via Anchoring Inorganic QDs on COFs
ACS Catalysis ( IF 11.3 ) Pub Date : 2024-01-22 , DOI: 10.1021/acscatal.4c00026
Ying He 1 , Peiyu Hu 1 , Jianjun Zhang 1 , Guijie Liang 2 , Jiaguo Yu 1 , Feiyan Xu 1
Affiliation  

Photocatalytic conversion of CO2 into valuable hydrocarbon fuels holds great promise in addressing emerging energy shortages and environmental crises while fulfilling pressing societal and national development demands. Nonetheless, its efficiency is hindered by restricted CO2 chemisorption, rapid electron–hole recombination, and weak redox capability. Drawing inspiration from the distinctive characteristics of Schiff-based covalent organic frameworks (COFs), including substantial specific surface area, unique pore structure, and an abundance of weakly alkaline nitrogen elements, we employ the TPA-COF to enhance the chemisorption and activation of acidic CO2 molecules, as validated by the CO2-temperature-programmed desorption analysis. Furthermore, anchoring CsPbBr3 quantum dots (QDs) onto the COF facilitates the effective spatial separation of photoinduced charge carriers with strong redox capability, resulting from the formation of S-scheme heterojunctions between the COF and QDs as substantiated by in situ irradiation X-ray photoelectron spectroscopy, femtosecond transient absorption spectroscopy, and density functional theory simulations. As anticipated, the optimized COF/QDs heterostructures exhibit remarkable enhancements in CO2 photoreduction performance in the absence of any molecule cocatalyst or scavenger, yielding CO and CH4 at rates of 41.2 and 13.7 μmol g–1, respectively. This work provides valuable insights into the development of novel organic/inorganic heterojunction photocatalysts with CO2 chemisorption and S-scheme charge separation, offering great potential for sustainable artificial photosynthesis.

中文翻译:

促进人工光合作用:通过将无机量子点锚定在 COF 上实现 CO2 化学吸附和 S 型电荷分离

将CO 2光催化转化为有价值的碳氢化合物燃料在解决新出现的能源短缺和环境危机同时满足紧迫的社会和国家发展需求方面具有广阔的前景。然而,其效率受到有限的CO 2化学吸附、快速的电子-空穴复合和弱的氧化还原能力的阻碍。受希夫基共价有机框架(COF)的独特特性的启发,包括巨大的比表面积、独特的孔结构和丰富的弱碱性氮元素,我们采用TPA-COF来增强酸性物质的化学吸附和活化。 CO 2分子,通过 CO 2程序升温解吸分析进行验证。此外,将 CsPbBr 3量子点(QD)锚定到 COF 上,有利于具有强氧化还原能力的光生载流子的有效空间分离,这是由于 COF 和 QD 之间形成 S 型异质结,如原位辐射 X 射线所证实的那样光电子能谱、飞秒瞬态吸收光谱和密度泛函理论模拟。正如预期的那样,优化的COF/QD异质结构在没有任何分子助催化剂或清除剂的情况下表现出显着增强的CO 2光还原性能,产生CO和CH 4的速率分别为41.2和13.7 μmol g –1。这项工作为开发具有CO 2化学吸附和S型电荷分离的新型有机/无机异质结光催化剂提供了宝贵的见解,为可持续的人工光合作用提供了巨大的潜力。
更新日期:2024-01-22
down
wechat
bug