Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Intervention-Free Graphitization of Carbon Microspheres from a Non-Graphitizing Polymer at Low Temperature: Nanopores as Dynamic Nanoreactors
Small ( IF 13.0 ) Pub Date : 2024-01-22 , DOI: 10.1002/smll.202308082 Aliyeh Afzalalghom 1 , Ali Beitollahi 1 , Seyed Mohammad Mirkazemi 1 , Mahdi Maleki 1 , Hossein Sarpoolaky 1
Small ( IF 13.0 ) Pub Date : 2024-01-22 , DOI: 10.1002/smll.202308082 Aliyeh Afzalalghom 1 , Ali Beitollahi 1 , Seyed Mohammad Mirkazemi 1 , Mahdi Maleki 1 , Hossein Sarpoolaky 1
Affiliation
Graphitizability of organic precursors is the topic of numerous investigations due to the wide applications of graphitic materials in the industry and emerging technologies of supercapacitors, batteries, etc. Most polymers, such as polydivinyl benzene (PDVB) are classified as non-graphitizings that do not convert to Graphite even after heating to 3000℃. Here, for the first time, the development of graphitic structure in the hierarchal porous sulfonated-PDVB microspheres without employing specific equipment or additives like metal catalysts, organic ingredients, or graphite particles, at 1100°C is reported. The abnormal additive-free graphitic structure formation is confirmed by Raman spectroscopy (ID/IG = 0.87), high-resolution transmission electron microscopy (HRTEM), and selected area diffraction patterns (SAED), as well as x-ray diffraction patterns (XRD), while preservation of aromatic compounds from the carbonization is detected by Fourier transform infrared (FTIR) analysis. Polymer evolution from room temperature to 1100°C is also studied by FTIR, Raman spectroscopy, and XRD techniques. Based on the obtained results, it is suggested that the hierarchal and complicated ink-bottle pore network with a high surface area besides super micropores in the sulfonated-PDVB microspheres has served as nano-sized reaction media. These pores, hereafter referred as “dynamic nanoreactors”, are expected to have confined the in-situ produced thermal decomposition products containing broken bond benzene rings, while changing dimensionally and structurally during the designed carbonization regime. This confinement has led to the benzene rings fusion at 250°C, a remarkable extension of them at 450°C, their growth to graphene sheets at 900°C and finally, the stacking of curved graphene layers at 1100°C. The results of this research put stress on the capability of nanopores as nanoreactors to facilitate reactions of decomposition products at low temperatures and ambient pressures to form stacked layers of graphene; A transformation that normally requires catalysts and very high pressures for only specific polyaromatic hydrocarbons.
中文翻译:
来自非石墨化聚合物的碳微球在低温下的无干预石墨化:纳米孔作为动态纳米反应器
由于石墨材料在工业中的广泛应用以及超级电容器、电池等新兴技术,有机前驱体的石墨化性成为众多研究的主题。大多数聚合物,例如聚二乙烯基苯(PDVB),被归类为非石墨化性,不具有石墨化性。加热至3000℃仍会转化为石墨。在此,首次报道了在 1100°C 下,在不使用特定设备或金属催化剂、有机成分或石墨颗粒等添加剂的情况下,多级多孔磺化 PDVB 微球中石墨结构的发展。通过拉曼光谱 ( ID / IG = 0.87)、高分辨率透射电子显微镜 (HRTEM)、选区衍射图 (SAED) 以及 X 射线衍射图证实了异常的无添加剂石墨结构形成(XRD),同时通过傅里叶变换红外(FTIR)分析检测碳化过程中芳香族化合物的保留。还通过 FTIR、拉曼光谱和 XRD 技术研究了从室温到 1100°C 的聚合物演化。基于所获得的结果,表明磺化PDVB微球中除了超微孔之外,还具有高表面积的分层且复杂的墨水瓶孔网络可以作为纳米尺寸的反应介质。这些孔隙(以下称为“动态纳米反应器”)预计将限制原位产生的含有断键苯环的热分解产物,同时在设计的碳化状态期间发生尺寸和结构变化。 这种限制导致苯环在 250°C 时融合,在 450°C 时显着延伸,在 900°C 时生长成石墨烯片,最后在 1100°C 时弯曲石墨烯层堆叠。这项研究的结果强调了纳米孔作为纳米反应器的能力,以促进分解产物在低温和环境压力下反应形成石墨烯堆叠层;通常仅针对特定多芳烃的转化需要催化剂和非常高的压力。
更新日期:2024-01-22
中文翻译:
来自非石墨化聚合物的碳微球在低温下的无干预石墨化:纳米孔作为动态纳米反应器
由于石墨材料在工业中的广泛应用以及超级电容器、电池等新兴技术,有机前驱体的石墨化性成为众多研究的主题。大多数聚合物,例如聚二乙烯基苯(PDVB),被归类为非石墨化性,不具有石墨化性。加热至3000℃仍会转化为石墨。在此,首次报道了在 1100°C 下,在不使用特定设备或金属催化剂、有机成分或石墨颗粒等添加剂的情况下,多级多孔磺化 PDVB 微球中石墨结构的发展。通过拉曼光谱 ( ID / IG = 0.87)、高分辨率透射电子显微镜 (HRTEM)、选区衍射图 (SAED) 以及 X 射线衍射图证实了异常的无添加剂石墨结构形成(XRD),同时通过傅里叶变换红外(FTIR)分析检测碳化过程中芳香族化合物的保留。还通过 FTIR、拉曼光谱和 XRD 技术研究了从室温到 1100°C 的聚合物演化。基于所获得的结果,表明磺化PDVB微球中除了超微孔之外,还具有高表面积的分层且复杂的墨水瓶孔网络可以作为纳米尺寸的反应介质。这些孔隙(以下称为“动态纳米反应器”)预计将限制原位产生的含有断键苯环的热分解产物,同时在设计的碳化状态期间发生尺寸和结构变化。 这种限制导致苯环在 250°C 时融合,在 450°C 时显着延伸,在 900°C 时生长成石墨烯片,最后在 1100°C 时弯曲石墨烯层堆叠。这项研究的结果强调了纳米孔作为纳米反应器的能力,以促进分解产物在低温和环境压力下反应形成石墨烯堆叠层;通常仅针对特定多芳烃的转化需要催化剂和非常高的压力。