当前位置:
X-MOL 学术
›
J. Non Equilib. Thermodyn.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Revisit nonequilibrium thermodynamics based on thermomass theory and its applications in nanosystems
Journal of Non-Equilibrium Thermodynamics ( IF 4.3 ) Pub Date : 2024-01-22 , DOI: 10.1515/jnet-2023-0094 Renjie Hua 1 , Yuan Dong 1
Journal of Non-Equilibrium Thermodynamics ( IF 4.3 ) Pub Date : 2024-01-22 , DOI: 10.1515/jnet-2023-0094 Renjie Hua 1 , Yuan Dong 1
Affiliation
The development of non-Fourier heat conduction models is encouraged by the invalidity of Fourier’s law to explain heat conduction in ultrafast or ultrasmall systems. The production of negative entropy will result from the combination of traditional nonequlibrium thermodynamics and non-Fourier heat conduction models. To resolve this paradox, extended irreversible thermodynamics (EIT) introduces a new state variable. However, real dynamics variables like force and momentum are still missing from nonequilibrium thermodynamics and EIT’s generalized force and generalized flux. Heat has both mass and energy, according to thermomass theory and Einstein’s mass-energy relation. The generalized heat conduction model containing non-Fourier effects was established by thermomass gas model. The thermomass theory reshapes the concept of the generalized force and flux, temperature, and entropy production in nonequilibrium thermodynamics and revisits the assumption for the linear regression of the fluctuations in Onsager reciprocal relation. The generalized heat conduction model based on thermomass theory has been used to study thermal conductivity, thermoelectric effect, and thermal rectification effect in nanosystems.
中文翻译:
重新审视基于热质理论的非平衡热力学及其在纳米系统中的应用
由于傅里叶定律无法解释超快或超小型系统中的热传导,因此鼓励了非傅里叶热传导模型的发展。负熵的产生将是传统非平衡热力学和非傅里叶热传导模型相结合的结果。为了解决这个悖论,扩展不可逆热力学(EIT)引入了一个新的状态变量。然而,非平衡热力学和 EIT 的广义力和广义通量中仍然缺少像力和动量这样的真实动力学变量。根据热质理论和爱因斯坦的质能关系,热既有质量又有能量。利用热质气体模型建立了包含非傅立叶效应的广义热传导模型。热质理论重塑了非平衡热力学中广义力和通量、温度和熵产生的概念,并重新审视了 Onsager 倒数关系中波动的线性回归假设。基于热质理论的广义热传导模型已用于研究纳米系统中的热导率、热电效应和热整流效应。
更新日期:2024-01-22
中文翻译:
重新审视基于热质理论的非平衡热力学及其在纳米系统中的应用
由于傅里叶定律无法解释超快或超小型系统中的热传导,因此鼓励了非傅里叶热传导模型的发展。负熵的产生将是传统非平衡热力学和非傅里叶热传导模型相结合的结果。为了解决这个悖论,扩展不可逆热力学(EIT)引入了一个新的状态变量。然而,非平衡热力学和 EIT 的广义力和广义通量中仍然缺少像力和动量这样的真实动力学变量。根据热质理论和爱因斯坦的质能关系,热既有质量又有能量。利用热质气体模型建立了包含非傅立叶效应的广义热传导模型。热质理论重塑了非平衡热力学中广义力和通量、温度和熵产生的概念,并重新审视了 Onsager 倒数关系中波动的线性回归假设。基于热质理论的广义热传导模型已用于研究纳米系统中的热导率、热电效应和热整流效应。