当前位置:
X-MOL 学术
›
J. Non Equilib. Thermodyn.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Heat transfer within nonequilibrium dense aluminum heated by a heavy ion beam
Journal of Non-Equilibrium Thermodynamics ( IF 4.3 ) Pub Date : 2024-01-22 , DOI: 10.1515/jnet-2023-0061 Chiwan Song 1, 2 , Seongmin Lee 1, 2 , Woosuk Bang 1, 2
Journal of Non-Equilibrium Thermodynamics ( IF 4.3 ) Pub Date : 2024-01-22 , DOI: 10.1515/jnet-2023-0061 Chiwan Song 1, 2 , Seongmin Lee 1, 2 , Woosuk Bang 1, 2
Affiliation
Energetic laser-accelerated ions can heat a small solid-density sample homogeneously to temperatures over 10,000 K in less than a nanosecond. During this brief heating time, the electron temperature of the sample rises first, and then the ion temperature increases owing to the heat transfer between the hot electrons and cold ions. Since energy deposition from the incident heavy ion beam continues concurrently with the electron-ion relaxation process within the heated sample, the electron and ion temperatures do not reach equilibrium until the end of the heating. Here we calculate the temperature evolutions of electrons and ions within a dense aluminum sample heated by a laser-accelerated gold ions using the two-temperature model. For these calculations, we use the published stopping power data, known electron-ion coupling factors, and the SESAME equation-of-state (EOS) table for aluminum. For the first time, we investigate the electron and ion temperature distributions within the warm dense aluminum sample and the heating uniformity throughout the entire heating period. We anticipate that knowledge of the temperature evolution during heating will allow for the study of the stopping power, thermal conductivity, EOS, and opacity of warm dense matter heated by an energetic heavy ion beam.
中文翻译:
由重离子束加热的非平衡致密铝内的传热
高能激光加速离子可以在不到一纳秒的时间内将小型固体密度样品均匀加热到超过 10,000 K 的温度。在这段短暂的加热时间内,样品的电子温度首先升高,然后由于热电子和冷离子之间的热传递,离子温度升高。由于入射重离子束的能量沉积与加热样品内的电子-离子弛豫过程同时进行,因此电子和离子温度直到加热结束才达到平衡。在这里,我们使用双温度模型计算了由激光加速金离子加热的致密铝样品中电子和离子的温度演变。对于这些计算,我们使用已发布的阻止本领数据、已知的电子-离子耦合因子以及铝的 SESAME 状态方程 (EOS) 表。我们首次研究了温暖致密铝样品内的电子和离子温度分布以及整个加热期间的加热均匀性。我们预计,对加热过程中温度演化的了解将有助于研究由高能重离子束加热的热致密物质的阻止本领、热导率、EOS 和不透明度。
更新日期:2024-01-22
中文翻译:
由重离子束加热的非平衡致密铝内的传热
高能激光加速离子可以在不到一纳秒的时间内将小型固体密度样品均匀加热到超过 10,000 K 的温度。在这段短暂的加热时间内,样品的电子温度首先升高,然后由于热电子和冷离子之间的热传递,离子温度升高。由于入射重离子束的能量沉积与加热样品内的电子-离子弛豫过程同时进行,因此电子和离子温度直到加热结束才达到平衡。在这里,我们使用双温度模型计算了由激光加速金离子加热的致密铝样品中电子和离子的温度演变。对于这些计算,我们使用已发布的阻止本领数据、已知的电子-离子耦合因子以及铝的 SESAME 状态方程 (EOS) 表。我们首次研究了温暖致密铝样品内的电子和离子温度分布以及整个加热期间的加热均匀性。我们预计,对加热过程中温度演化的了解将有助于研究由高能重离子束加热的热致密物质的阻止本领、热导率、EOS 和不透明度。