当前位置:
X-MOL 学术
›
Nano Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Integrated acoustic metamaterial triboelectric nanogenerator for joint low-frequency acoustic insulation and energy harvesting
Nano Energy ( IF 16.8 ) Pub Date : 2024-01-22 , DOI: 10.1016/j.nanoen.2024.109328 Ming Yuan , Weiyang Yao , Zhenjun Ding , Jiahui Li , Baoying Dai , Xueyong Zhang , Yannan Xie
Nano Energy ( IF 16.8 ) Pub Date : 2024-01-22 , DOI: 10.1016/j.nanoen.2024.109328 Ming Yuan , Weiyang Yao , Zhenjun Ding , Jiahui Li , Baoying Dai , Xueyong Zhang , Yannan Xie
In this study, we present a new device designed to manipulate low-frequency sound waves. The device utilizes the principles of acoustic metamaterials to achieve high-performance sound insulation, while also possessing the capability to convert sound energy into electrical energy. Unlike previous studies on membrane acoustic metamaterials, this device incorporates a membrane component but eliminates the need for precise tension force. The structural parameters of the device are frequency-dependent, allowing for a lightweight design while maintaining satisfactory low-frequency sound insulation performance. At the sound insulation peak frequency, the IAM-TENG exhibits an impressive sound insulation capability of over 30 dB. Moreover, when subjected to bandlimited white noise excitation in the frequency range of 50 Hz-500 Hz, the IAM-TENG showcases a substantial enhancement of nearly 10 dB in sound insulation performance in comparison to a sample of the same weight and size. Additionally, the device achieves a uniform displacement distribution, with large amplitude displacement occurring around the sound transmission dip frequency. Exploiting this property, we have designed a triboelectric nanogenerator (TENG) that can convert incident acoustic energy into electrical energy. This nanogenerator structure utilizes multi-walled carbon nanotubes (MWCNTs) and FEP (Fluorinated Ethylene Propylene) membrane as the triboelectric layers. With an acoustic excitation level of 100 dB at the optimal frequency, the harvested electrical power reaches 0.93 mW. The device has a surface mass density of only 2kg / m 2 , yet it provides remarkable acoustic insulation performance and can power small-scale electronic devices. These innovative properties have the potential to accelerate the development of self-powered, smart, and multifunctional structures in the Internet of Things era.
中文翻译:
用于联合低频隔音和能量收集的集成声学超材料摩擦纳米发电机
在这项研究中,我们提出了一种旨在操纵低频声波的新设备。该装置利用声学超材料原理实现高性能隔音,同时还具备将声能转化为电能的能力。与之前对膜声学超材料的研究不同,该装置采用了膜元件,但不需要精确的张力。该装置的结构参数与频率相关,允许轻量化设计,同时保持令人满意的低频隔音性能。在隔音峰值频率下,IAM-TENG 表现出超过 30 dB 的令人印象深刻的隔音能力。此外,当受到50 Hz-500 Hz频率范围内的带限白噪声激励时,与相同重量和尺寸的样品相比,IAM-TENG的隔音性能大幅增强了近10 dB。此外,该装置实现了均匀的位移分布,在声音传输倾角频率附近发生大幅度位移。利用这一特性,我们设计了一种摩擦纳米发电机(TENG),可以将入射声能转化为电能。该纳米发电机结构利用多壁碳纳米管 (MWCNT) 和 FEP(氟化乙烯丙烯)膜作为摩擦电层。在最佳频率下声激励水平为 100 dB 时,收集的电功率达到 0.93 mW。该器件的表面质量密度仅为2kg/m2,但却具有出色的隔音性能,可为小型电子设备供电。 这些创新特性有可能加速物联网时代自供电、智能和多功能结构的发展。
更新日期:2024-01-22
中文翻译:
用于联合低频隔音和能量收集的集成声学超材料摩擦纳米发电机
在这项研究中,我们提出了一种旨在操纵低频声波的新设备。该装置利用声学超材料原理实现高性能隔音,同时还具备将声能转化为电能的能力。与之前对膜声学超材料的研究不同,该装置采用了膜元件,但不需要精确的张力。该装置的结构参数与频率相关,允许轻量化设计,同时保持令人满意的低频隔音性能。在隔音峰值频率下,IAM-TENG 表现出超过 30 dB 的令人印象深刻的隔音能力。此外,当受到50 Hz-500 Hz频率范围内的带限白噪声激励时,与相同重量和尺寸的样品相比,IAM-TENG的隔音性能大幅增强了近10 dB。此外,该装置实现了均匀的位移分布,在声音传输倾角频率附近发生大幅度位移。利用这一特性,我们设计了一种摩擦纳米发电机(TENG),可以将入射声能转化为电能。该纳米发电机结构利用多壁碳纳米管 (MWCNT) 和 FEP(氟化乙烯丙烯)膜作为摩擦电层。在最佳频率下声激励水平为 100 dB 时,收集的电功率达到 0.93 mW。该器件的表面质量密度仅为2kg/m2,但却具有出色的隔音性能,可为小型电子设备供电。 这些创新特性有可能加速物联网时代自供电、智能和多功能结构的发展。