当前位置: X-MOL 学术IMA J. Numer. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Convergence with rates for a Riccati-based discretization of SLQ problems with SPDEs
IMA Journal of Numerical Analysis ( IF 2.3 ) Pub Date : 2024-01-19 , DOI: 10.1093/imanum/drad097
Andreas Prohl 1 , Yanqing Wang 2
Affiliation  

We consider a new discretization in space (parameter $h>0$) and time (parameter $\tau>0$) of a stochastic optimal control problem, where a quadratic functional is minimized subject to a linear stochastic heat equation with linear noise. Its construction is based on the perturbation of a generalized difference Riccati equation to approximate the related feedback law. We prove a convergence rate of almost ${\mathcal O}(h^{2}+\tau )$ for its solution, and conclude from it a rate of almost ${\mathcal O}(h^{2}+\tau )$ resp. ${\mathcal O}(h^{2}+\tau ^{1/2})$ for computable approximations of the optimal state and control with additive resp. multiplicative noise.

中文翻译:


SPDE 的基于 Riccati 的 SLQ 离散化问题的收敛速率



我们考虑了随机最优控制问题在空间(参数 $h>0$)和时间(参数 $\tau>0$)上的新离散化,其中二次函数在具有线性噪声的线性随机热方程下最小化。它的构造基于广义差分 Riccati 方程的扰动,以近似于相关的反馈定律。我们证明了其解的收敛率接近 ${\mathcal O}(h^{2}+\tau )$,并从中得出结论,对于最佳状态和加法或乘法噪声的最佳状态和控制的可计算近似值,收敛率接近 ${\mathcal O}(h^{2}+\tau )$ 或 ${\mathcal O}(h^{2}+\tau ^{1/2})$。
更新日期:2024-01-19
down
wechat
bug