当前位置: X-MOL 学术IMA J. Numer. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gamma-convergent LDG method for large bending deformations of bilayer plates
IMA Journal of Numerical Analysis ( IF 2.3 ) Pub Date : 2024-01-19 , DOI: 10.1093/imanum/drad100
Andrea Bonito 1 , Ricardo H Nochetto 2 , Shuo Yang 3
Affiliation  

Bilayer plates are slender structures made of two thin layers of different materials. They react to environmental stimuli and undergo large bending deformations with relatively small actuation. The reduced model is a constrained minimization problem for the second fundamental form, with a given spontaneous curvature that encodes material properties, subject to an isometry constraint. We design a local discontinuous Galerkin (LDG) method, which imposes a relaxed discrete isometry constraint and controls deformation gradients at barycenters of elements. We prove $\varGamma $-convergence of LDG, design a fully practical gradient flow, which gives rise to a linear scheme at every step, and show energy stability and control of the isometry defect. We extend the $\varGamma $-convergence analysis to piecewise quadratic creases. We also illustrate the performance of the LDG method with several insightful simulations of large deformations, one including a curved crease.

中文翻译:


用于双层板大弯曲变形的 Gamma 收敛 LDG 方法



双层板是由两层不同材料制成的细长结构。它们对环境刺激做出反应,并以相对较小的驱动经历较大的弯曲变形。简化模型是第二种基本形式的约束最小化问题,具有给定的自发曲率,该曲率编码材料属性,受等轴测约束。我们设计了一种局部间断伽辽金 (LDG) 方法,该方法施加了宽松的离散等轴测约束并控制了单元重心处的变形梯度。我们证明了 LDG 的 $\varGamma $-收敛性,设计了一个完全实用的梯度流,它在每一步都产生了一个线性方案,并展示了能量稳定性和等轴测缺陷的控制。我们将 $\varGamma $ 收敛分析扩展到分段二次折痕。我们还通过对大变形的几次深入模拟来说明 LDG 方法的性能,其中一次包括弯曲的折痕。
更新日期:2024-01-19
down
wechat
bug