当前位置:
X-MOL 学术
›
Water Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Side-Stream Enhanced Biological Phosphorus Removal (S2EBPR) enables effective phosphorus removal in a pilot-scale A-B stage shortcut nitrogen removal system for mainstream municipal wastewater treatment
Water Research ( IF 11.4 ) Pub Date : 2023-12-29 , DOI: 10.1016/j.watres.2023.121050 Dongqi Wang 1 , Il Han 2 , Kester McCullough 3 , Stephanie Klaus 4 , Jangho Lee 2 , Varun Srinivasan 5 , Guangyu Li 6 , Zijian Leo Wang 7 , Charles B Bott 4 , Jim McQuarrie 8 , Beverley M Stinson 9 , Christine deBarbadillo 10 , Paul Dombrowski 11 , James Barnard 12 , April Z Gu 6
Water Research ( IF 11.4 ) Pub Date : 2023-12-29 , DOI: 10.1016/j.watres.2023.121050 Dongqi Wang 1 , Il Han 2 , Kester McCullough 3 , Stephanie Klaus 4 , Jangho Lee 2 , Varun Srinivasan 5 , Guangyu Li 6 , Zijian Leo Wang 7 , Charles B Bott 4 , Jim McQuarrie 8 , Beverley M Stinson 9 , Christine deBarbadillo 10 , Paul Dombrowski 11 , James Barnard 12 , April Z Gu 6
Affiliation
While the adsorption/bio-oxidation (A/B) process has been widely studied for carbon capture and shortcut nitrogen (N) removal, its integration with enhanced biological phosphorus (P) removal (EBPR) has been considered challenging and thus unexplored. Here, full-scale pilot testing with an integrated system combining A-stage high-rate activated sludge with B-stage partial (de)nitrification/anammox and side-stream EBPR (HRAS-P(D)N/A-S2EBPR) was conducted treating real municipal wastewater. The results demonstrated that, despite the relatively low influent carbon load, the B-stage P(D)N-S2EBPR system could achieve effective P removal performance, with the carbon supplement and redirection of the A-stage sludge fermentate to the S2EBPR. The novel process configuration design enabled a system shift in carbon flux and distribution for efficient EBPR, and provided unique selective factors for ecological niche partitioning among different key functionally relevant microorganisms including polyphosphate accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs). The combined nitrite from B-stage to S2EBPR and aerobic-anoxic conditions in our HRAS-P(D)N/A-S2EBPR system promoted DPAOs for simultaneous internal carbon-driven denitrification via nitrite and P removal. 16S rRNA gene-based oligotyping analysis revealed high phylogenetic microdiversity within the Accumulibacter population and discovered coexistence of certain oligotypes of Accumulibacter and Competibacter correlated with efficient P removal. Single-cell Raman micro-spectroscopy-based phenotypic profiling showed high phenotypic microdiversity in the active PAO community and the involvement of unidentified PAOs and internal carbon-accumulating organisms that potentially played an important role in system performance. This is the first pilot study to demonstrate that the P(D)N-S2EBPR system could achieve shortcut N removal and influent carbon-independent EBPR simultaneously, and the results provided insights into the effects of incorporating S2EBPR into A/B process on metabolic activities, microbial ecology, and resulted system performance.
中文翻译:
侧流强化生物除磷 (S2EBPR) 可在主流城市废水处理的中试规模 AB 级捷径脱氮系统中实现有效除磷
虽然吸附/生物氧化 (A/B) 过程已被广泛研究用于碳捕获和快捷氮 (N) 去除,但其与增强型生物除磷 (P) 去除 (EBPR) 的集成被认为具有挑战性,因此尚未得到探索。在此,我们对 A 阶段高效活性污泥与 B 阶段部分(反)硝化/厌氧氨氧化和侧流 EBPR(HRAS-P(D)N/A-S2EBPR)相结合的集成系统进行了全面中试。对真实的城市废水进行了处理。结果表明,尽管进水碳负荷相对较低,但通过补充碳并将A阶段污泥发酵液重定向至S2EBPR,B阶段P(D)N-S2EBPR系统仍能实现有效的除磷性能。新颖的工艺配置设计实现了碳通量和分布的系统转变,以实现高效的 EBPR,并为不同关键功能相关微生物(包括聚磷酸盐积累生物 (PAO) 和糖原积累生物 (GAO))之间的生态位分配提供了独特的选择因素。我们的 HRAS-P(D)N/A-S2EBPR 系统中从 B 阶段到 S2EBPR 的组合亚硝酸盐和好氧缺氧条件促进了 DPAO 通过亚硝酸盐和 P 去除同时进行内部碳驱动反硝化。基于 16S rRNA 基因的寡型分析揭示了 Accumulibacter 群体内的高度系统发育微观多样性,并发现 Accumulibacter 和 Competibacter 的某些寡型共存与有效除磷相关。 基于单细胞拉曼显微光谱的表型分析显示,活跃的 PAO 群落具有高表型微多样性,并且涉及未识别的 PAO 和内部碳积累生物体,这些生物体可能在系统性能中发挥重要作用。这是第一个证明P(D)N-S2EBPR系统可以同时实现快捷脱氮和进水不依赖碳的EBPR的试点研究,结果为将S2EBPR纳入A/B过程对代谢活动的影响提供了见解。 、微生物生态学以及最终的系统性能。
更新日期:2023-12-29
中文翻译:
侧流强化生物除磷 (S2EBPR) 可在主流城市废水处理的中试规模 AB 级捷径脱氮系统中实现有效除磷
虽然吸附/生物氧化 (A/B) 过程已被广泛研究用于碳捕获和快捷氮 (N) 去除,但其与增强型生物除磷 (P) 去除 (EBPR) 的集成被认为具有挑战性,因此尚未得到探索。在此,我们对 A 阶段高效活性污泥与 B 阶段部分(反)硝化/厌氧氨氧化和侧流 EBPR(HRAS-P(D)N/A-S2EBPR)相结合的集成系统进行了全面中试。对真实的城市废水进行了处理。结果表明,尽管进水碳负荷相对较低,但通过补充碳并将A阶段污泥发酵液重定向至S2EBPR,B阶段P(D)N-S2EBPR系统仍能实现有效的除磷性能。新颖的工艺配置设计实现了碳通量和分布的系统转变,以实现高效的 EBPR,并为不同关键功能相关微生物(包括聚磷酸盐积累生物 (PAO) 和糖原积累生物 (GAO))之间的生态位分配提供了独特的选择因素。我们的 HRAS-P(D)N/A-S2EBPR 系统中从 B 阶段到 S2EBPR 的组合亚硝酸盐和好氧缺氧条件促进了 DPAO 通过亚硝酸盐和 P 去除同时进行内部碳驱动反硝化。基于 16S rRNA 基因的寡型分析揭示了 Accumulibacter 群体内的高度系统发育微观多样性,并发现 Accumulibacter 和 Competibacter 的某些寡型共存与有效除磷相关。 基于单细胞拉曼显微光谱的表型分析显示,活跃的 PAO 群落具有高表型微多样性,并且涉及未识别的 PAO 和内部碳积累生物体,这些生物体可能在系统性能中发挥重要作用。这是第一个证明P(D)N-S2EBPR系统可以同时实现快捷脱氮和进水不依赖碳的EBPR的试点研究,结果为将S2EBPR纳入A/B过程对代谢活动的影响提供了见解。 、微生物生态学以及最终的系统性能。