当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-Conductivity Li2ZrCl6 Electrolytes via an Optimized Two-Step Ball-Milling Method for All-Solid-State Lithium–Metal Batteries
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-01-20 , DOI: 10.1021/acssuschemeng.3c06652
Juntao Shi 1 , Zhujun Yao 1, 2, 3 , Jiayuan Xiang 2 , Chen Cai 1 , Fangfang Tu 2 , Yongqi Zhang 3 , Weilin Yao 1 , Qixiang Jia 1 , Yan Zhou 1 , Shenghui Shen 1 , Yefeng Yang 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-01-20 , DOI: 10.1021/acssuschemeng.3c06652
Juntao Shi 1 , Zhujun Yao 1, 2, 3 , Jiayuan Xiang 2 , Chen Cai 1 , Fangfang Tu 2 , Yongqi Zhang 3 , Weilin Yao 1 , Qixiang Jia 1 , Yan Zhou 1 , Shenghui Shen 1 , Yefeng Yang 1
Affiliation
![]() |
The combined advantages of good mechanical deformability, high Li+ conductivity, and strong compatibility with 4 V-class cathodes make halide solid-state electrolytes promising candidates for high-energy all-solid-state lithium–metal batteries (ASSLMBs). Among these, the cost-effective Li2ZrCl6 has garnered significant attention due to the non-inclusion of rare-earth metals. However, the conventional one-step ball-milling synthesized Li2ZrCl6 always exhibits an ionic conductivity lower than 5 × 10–4 S cm–1 in most literature. Here, a simple optimized two-step ball-milling strategy is adopted to achieve a high Li+ conductivity of nearly 1 × 10–3 S cm–1 at 30 °C for Li2ZrCl6. Simultaneously, the effects of rotational speed and ball-to-powder mass ratio on the structure and ionic conductivity of Li2ZrCl6 are investigated. The Li+ migration pathways in electrolytes are also studied by bond valence site energy (BVSE) calculations. Moreover, the application potential of the modified Li2ZrCl6 electrolyte in ASSLMBs assembled with the LiCoO2 cathode and the lithium–indium alloy anode has been studied. The ASSLMBs exhibit an initial discharge capacity of 123.4 mA h g–1 at room temperature (0.1 C) and a capacity retention of 71% after 50 cycles. Therefore, this study introduces an effective strategy for synthesizing high-performance halide electrolytes, thus facilitating the practical implementation of halide-based ASSLMBs.
中文翻译:
通过优化的两步球磨法制备高电导率 Li2ZrCl6 电解质,用于全固态锂金属电池
良好的机械变形能力、高Li +电导率以及与4 V级正极的强兼容性等综合优势,使得卤化物固态电解质成为高能全固态锂金属电池(ASSLMB)的有希望的候选者。其中,具有成本效益的Li 2 ZrCl 6由于不含稀土金属而受到广泛关注。然而,在大多数文献中,传统的一步球磨法合成的Li 2 ZrCl 6的离子电导率始终低于5×10 –4 S cm –1。在此,采用简单的优化两步球磨策略,使Li 2 ZrCl 6在30 °C 时实现接近1 × 10 –3 S cm –1的高Li +电导率。同时研究了转速和球粉质量比对Li 2 ZrCl 6结构和离子电导率的影响。还通过键价位能量(BVSE)计算研究了电解质中Li +的迁移路径。此外,还研究了改性Li 2 ZrCl 6电解质在由LiCoO 2正极和锂-铟合金负极组装的ASSLMB中的应用潜力。ASSLMB在室温 (0.1 C) 下的初始放电容量为 123.4 mA hg –1,50 次循环后容量保持率为 71% 。因此,本研究提出了一种合成高性能卤化物电解质的有效策略,从而促进了卤化物基ASSLMB的实际应用。
更新日期:2024-01-20
中文翻译:

通过优化的两步球磨法制备高电导率 Li2ZrCl6 电解质,用于全固态锂金属电池
良好的机械变形能力、高Li +电导率以及与4 V级正极的强兼容性等综合优势,使得卤化物固态电解质成为高能全固态锂金属电池(ASSLMB)的有希望的候选者。其中,具有成本效益的Li 2 ZrCl 6由于不含稀土金属而受到广泛关注。然而,在大多数文献中,传统的一步球磨法合成的Li 2 ZrCl 6的离子电导率始终低于5×10 –4 S cm –1。在此,采用简单的优化两步球磨策略,使Li 2 ZrCl 6在30 °C 时实现接近1 × 10 –3 S cm –1的高Li +电导率。同时研究了转速和球粉质量比对Li 2 ZrCl 6结构和离子电导率的影响。还通过键价位能量(BVSE)计算研究了电解质中Li +的迁移路径。此外,还研究了改性Li 2 ZrCl 6电解质在由LiCoO 2正极和锂-铟合金负极组装的ASSLMB中的应用潜力。ASSLMB在室温 (0.1 C) 下的初始放电容量为 123.4 mA hg –1,50 次循环后容量保持率为 71% 。因此,本研究提出了一种合成高性能卤化物电解质的有效策略,从而促进了卤化物基ASSLMB的实际应用。