当前位置:
X-MOL 学术
›
New J. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mechanistic and kinetic study of limona ketone oxidation initiated by hydroxyl radical: impact of indoor air pollution
New Journal of Chemistry ( IF 2.7 ) Pub Date : 2024-01-19 , DOI: 10.1039/d3nj05904a Angappan Mano Priya 1 , Gisèle El Dib 1
New Journal of Chemistry ( IF 2.7 ) Pub Date : 2024-01-19 , DOI: 10.1039/d3nj05904a Angappan Mano Priya 1 , Gisèle El Dib 1
Affiliation
Degradation of air quality in the atmosphere is mainly caused by air pollution and represents a major health risk. Limona ketone (LK) (C9H14O, 4-acetyl-1-methyl-1-cyclohexene) is emitted by α-pinene, which is massively present in the indoor environment and a major atmospheric source of secondary organic aerosols (SOAs), and has attracted attention in the field of atmospheric chemistry. The OH-addition and H-abstraction reactions of LK by OH radicals have been investigated using M06-2X, ωB97X-D, MP2 and CCSD(T) with the 6-311+G(d,p) basis set. Its degradation channels and reactions with O2, NO and HO2 radicals have been explored using quantum chemical methods. The reaction kinetics were studied theoretically over the temperature range of 278–350 K by employing canonical variational transition state theory with the small curvature tunnelling (CVT/SCT) method for both barrierless channels and channels with barriers. The addition of OH at the C1 position of LK at the endocyclic double bond was shown to be the most favourable, with a small relative energy barrier of −7.27 kcal mol−1, and H-abstraction at the C4 position exhibited a relative energy barrier of −1.65 kcal mol−1 at the M06-2X/6-311+G(d,p) level of theory. Our calculated energy results show that the OH addition reactions are more dominant than the H-abstraction channel through electronic rearrangement. The obtained overall rate coefficient at 298 K is 4.77 × 10−10 cm3 molecule−1 s−1, which is in good agreement with the experimental rate coefficient of kOH = (1.29 ± 0.33) × 10−10 at 296 ± 2 K and ∼735 Torr determined by Atkinson et al. Addition of the OH radical at the C1 position predominates over all the other reaction channels, with a branching ratio of 56.20% at 298 K. Our theoretical results suggest that the atmospheric lifetime is ∼0.58 hours and the formation of stable product 1-(hydroperoxy-4-methylcyclohex-3-en-1-yl) ethenone is thermodynamically exothermic in nature. This work provides valuable information regarding the degradation mechanism and atmospheric fate of LK in the reaction initiated by the OH radical.
中文翻译:
羟自由基引发柠檬酮氧化的机理和动力学研究:室内空气污染的影响
大气中的空气质量下降主要是由空气污染引起的,是一个重大的健康风险。柠檬酮 (LK)(C 9 H 14 O,4-乙酰基-1-甲基-1-环己烯)由 α-蒎烯释放,α-蒎烯大量存在于室内环境中,是二次有机气溶胶 (SOA) 的主要大气来源),并引起了大气化学领域的关注。使用 M06-2X、ωB97X-D、MP2 和 CCSD(T) 以及 6-311+G(d,p) 基组研究了 OH 自由基对 LK 的 OH 加成和 H 抽象反应。使用量子化学方法探索了其降解通道以及与O 2、NO和HO 2自由基的反应。采用规范变分过渡态理论和小曲率隧道(CVT/SCT)方法,对无势垒通道和有势垒通道的反应动力学进行了理论研究。环内双键LK的C1位上的OH加成是最有利的,相对能垒较小,为-7.27 kcal mol -1,而C4位上的H-抽象则表现出相对能垒在M06-2X/6-311+G(d,p)理论水平上为-1.65 kcal mol -1 。我们计算的能量结果表明,OH 加成反应比通过电子重排的 H 抽象通道更占主导地位。得到298 K下的总速率系数为4.77 × 10 −10 cm 3 molecular −1 s −1 ,与296 ± 2时的实验速率系数k OH = (1.29 ± 0.33) × 10 −10吻合较好K 和 ~735 Torr 由 Atkinson等人测定。C1 位上 OH 自由基的加成比所有其他反应通道都占主导地位,在 298 K 时支化率为 56.20%。我们的理论结果表明,大气寿命为 ∼0.58 小时,并形成稳定的产物 1-(氢过氧-4-甲基环己-3-en-1-基)乙烯酮本质上是热力学放热的。这项工作提供了有关 LK 在 OH 自由基引发的反应中的降解机制和大气归宿的有价值的信息。
更新日期:2024-01-24
中文翻译:
羟自由基引发柠檬酮氧化的机理和动力学研究:室内空气污染的影响
大气中的空气质量下降主要是由空气污染引起的,是一个重大的健康风险。柠檬酮 (LK)(C 9 H 14 O,4-乙酰基-1-甲基-1-环己烯)由 α-蒎烯释放,α-蒎烯大量存在于室内环境中,是二次有机气溶胶 (SOA) 的主要大气来源),并引起了大气化学领域的关注。使用 M06-2X、ωB97X-D、MP2 和 CCSD(T) 以及 6-311+G(d,p) 基组研究了 OH 自由基对 LK 的 OH 加成和 H 抽象反应。使用量子化学方法探索了其降解通道以及与O 2、NO和HO 2自由基的反应。采用规范变分过渡态理论和小曲率隧道(CVT/SCT)方法,对无势垒通道和有势垒通道的反应动力学进行了理论研究。环内双键LK的C1位上的OH加成是最有利的,相对能垒较小,为-7.27 kcal mol -1,而C4位上的H-抽象则表现出相对能垒在M06-2X/6-311+G(d,p)理论水平上为-1.65 kcal mol -1 。我们计算的能量结果表明,OH 加成反应比通过电子重排的 H 抽象通道更占主导地位。得到298 K下的总速率系数为4.77 × 10 −10 cm 3 molecular −1 s −1 ,与296 ± 2时的实验速率系数k OH = (1.29 ± 0.33) × 10 −10吻合较好K 和 ~735 Torr 由 Atkinson等人测定。C1 位上 OH 自由基的加成比所有其他反应通道都占主导地位,在 298 K 时支化率为 56.20%。我们的理论结果表明,大气寿命为 ∼0.58 小时,并形成稳定的产物 1-(氢过氧-4-甲基环己-3-en-1-基)乙烯酮本质上是热力学放热的。这项工作提供了有关 LK 在 OH 自由基引发的反应中的降解机制和大气归宿的有价值的信息。