当前位置:
X-MOL 学术
›
Annu. Rev. Earth Planet. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
On Dislocation Climb as an Important Deformation Mechanism for Planetary Interiors
Annual Review of Earth and Planetary Sciences ( IF 11.3 ) Pub Date : 2024-01-18 , DOI: 10.1146/annurev-earth-031621-063108 Philippe Carrez 1 , Alexandre Mussi 1 , Patrick Cordier 1, 2
Annual Review of Earth and Planetary Sciences ( IF 11.3 ) Pub Date : 2024-01-18 , DOI: 10.1146/annurev-earth-031621-063108 Philippe Carrez 1 , Alexandre Mussi 1 , Patrick Cordier 1, 2
Affiliation
An understanding of the rheological behavior of the solid Earth is fundamental to provide a quantitative description of most geological and geophysical phenomena. The continuum mechanics approach to describing large-scale phenomena needs to be informed by a description of the mechanisms operating at the atomic scale. These involve crystal defects, mainly vacancies and dislocations. This often leads to a binary view of creep reduced to diffusion creep or dislocation creep. However, the interaction between these two types of defects leading to dislocation climb plays an important role, and may even be the main one, in the high-temperature, low strain rate creep mechanisms of interest to the Earth sciences. Here we review the fundamentals of dislocation climb, highlighting the specific problems of minerals. We discuss the importance of computer simulations, informed by experiments, for accurately modeling climb. We show how dislocation climb increasingly appears as a deformation mechanism in its own right. We review the contribution of this mechanism to mineral deformation, particularly in Earth's mantle. Finally, we discuss progress and challenges, and we outline future work directions. ▪Dislocations can be sources or sinks of vacancies, resulting in a displacement out of the glide plane: climb.▪Dislocation climb can be a recovery mechanism during dislocation creep but also a strain-producing mechanism.▪The slow natural strain rates promote the contribution of climb, which is controlled by diffusion.▪In planetary interiors where dislocation glide can be inhibited by pressure, dislocation climb may be the only active mechanism.
中文翻译:
关于位错爬升是行星内部的重要变形机制
了解固体地球的流变行为对于提供大多数地质和地球物理现象的定量描述至关重要。描述大尺度现象的连续介质力学方法需要通过描述在原子尺度上运行的机制来提供信息。这些涉及晶体缺陷,主要是空位和位错。这通常会导致将蠕变简化为扩散蠕变或位错蠕变的二元视图。然而,这两类缺陷导致位错爬升的相互作用在地球科学感兴趣的高温、低应变率蠕变机制中起着重要作用,甚至可能是主要作用。在这里,我们回顾了位错攀岩的基本原理,重点介绍了矿物的具体问题。我们讨论了计算机模拟的重要性,这些模拟以实验为依据,对于准确模拟爬升。我们展示了位错爬升本身如何越来越多地表现为一种变形机制。我们回顾了这种机制对矿物变形的贡献,尤其是在地幔中。最后,我们讨论了进展和挑战,并概述了未来的工作方向。▪位错可以是空位的源头或汇,导致滑翔平面外的位移:爬升。▪位错爬升可以是位错蠕变过程中的一种恢复机制,但也是一种产生应变的机制。▪缓慢的自然应变速率促进了爬升的贡献,爬升是由扩散控制的。▪在行星内部,位错滑行可以受到压力的抑制, 脱位攀爬可能是唯一的活动机制。
更新日期:2024-01-18
中文翻译:
关于位错爬升是行星内部的重要变形机制
了解固体地球的流变行为对于提供大多数地质和地球物理现象的定量描述至关重要。描述大尺度现象的连续介质力学方法需要通过描述在原子尺度上运行的机制来提供信息。这些涉及晶体缺陷,主要是空位和位错。这通常会导致将蠕变简化为扩散蠕变或位错蠕变的二元视图。然而,这两类缺陷导致位错爬升的相互作用在地球科学感兴趣的高温、低应变率蠕变机制中起着重要作用,甚至可能是主要作用。在这里,我们回顾了位错攀岩的基本原理,重点介绍了矿物的具体问题。我们讨论了计算机模拟的重要性,这些模拟以实验为依据,对于准确模拟爬升。我们展示了位错爬升本身如何越来越多地表现为一种变形机制。我们回顾了这种机制对矿物变形的贡献,尤其是在地幔中。最后,我们讨论了进展和挑战,并概述了未来的工作方向。▪位错可以是空位的源头或汇,导致滑翔平面外的位移:爬升。▪位错爬升可以是位错蠕变过程中的一种恢复机制,但也是一种产生应变的机制。▪缓慢的自然应变速率促进了爬升的贡献,爬升是由扩散控制的。▪在行星内部,位错滑行可以受到压力的抑制, 脱位攀爬可能是唯一的活动机制。