当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spin-Selective Memtransistors with Magnetized Graphene
Advanced Materials ( IF 27.4 ) Pub Date : 2024-01-18 , DOI: 10.1002/adma.202310291 Juyeong Jeong 1 , Do Hoon Kiem 1 , Dan Guo 2 , Ruihuan Duan 3, 4 , Kenji Watanabe 5 , Takashi Taniguchi 5 , Zheng Liu 4 , Myung Joon Han 1 , Shoujun Zheng 2 , Heejun Yang 1
Advanced Materials ( IF 27.4 ) Pub Date : 2024-01-18 , DOI: 10.1002/adma.202310291 Juyeong Jeong 1 , Do Hoon Kiem 1 , Dan Guo 2 , Ruihuan Duan 3, 4 , Kenji Watanabe 5 , Takashi Taniguchi 5 , Zheng Liu 4 , Myung Joon Han 1 , Shoujun Zheng 2 , Heejun Yang 1
Affiliation
Spin-polarized bands in pristine and proximity-induced magnetic materials are promising building blocks for future devices. Conceptually new memory, logic, and neuromorphic devices are conceived based on atomically thin magnetic materials and the manipulation of their spin-polarized bands via electrical and optical methods. A critical remaining issue is the direct probe and the optimized use of the magnetic coupling effect in van der Waals heterostructures, which requires further delicate design of atomically thin magnetic materials and devices. Here, a spin-selective memtransistor with magnetized single-layered graphene on a reactive antiferromagnetic material, CrI3, is reported. The spin-dependent hybridization between graphene and CrI3 atomic layers enables the spin-selective bandgap opening in the single-layered graphene and the electric field control of magnetization in a specific CrI3 layer. The microscopic working principle is clarified by the first-principles calculations and theoretical analysis of the transport data. Reliable memtransistor operations (i.e., memory and logic device-combined operations), as well as a spin-selective probe of Landau levels in the magnetized graphene, are achieved by using the subtle manipulation of the magnetic proximity effect via electrical means.
中文翻译:
具有磁化石墨烯的自旋选择性记忆晶体管
原始磁性材料和邻近感应磁性材料中的自旋极化带是未来设备的有前途的构建模块。从概念上讲,新的存储器、逻辑和神经形态设备是基于原子薄磁性材料以及通过电学和光学方法操纵其自旋极化带而构思的。剩下的一个关键问题是范德华异质结构中磁耦合效应的直接探测和优化使用,这需要原子薄磁性材料和器件的进一步精细设计。在此,报道了一种在反应性反铁磁材料 CrI 3上具有磁化单层石墨烯的自旋选择性薄膜晶体管。石墨烯和CrI 3原子层之间的自旋相关杂化使得单层石墨烯中的自旋选择性带隙打开以及特定CrI 3层中磁化的电场控制成为可能。通过第一性原理计算和传输数据的理论分析,阐明了微观工作原理。可靠的记忆晶体管操作(即存储器和逻辑器件组合操作)以及磁化石墨烯中朗道能级的自旋选择性探针,是通过通过电气手段对磁邻近效应进行微妙操纵来实现的。
更新日期:2024-01-18
中文翻译:
具有磁化石墨烯的自旋选择性记忆晶体管
原始磁性材料和邻近感应磁性材料中的自旋极化带是未来设备的有前途的构建模块。从概念上讲,新的存储器、逻辑和神经形态设备是基于原子薄磁性材料以及通过电学和光学方法操纵其自旋极化带而构思的。剩下的一个关键问题是范德华异质结构中磁耦合效应的直接探测和优化使用,这需要原子薄磁性材料和器件的进一步精细设计。在此,报道了一种在反应性反铁磁材料 CrI 3上具有磁化单层石墨烯的自旋选择性薄膜晶体管。石墨烯和CrI 3原子层之间的自旋相关杂化使得单层石墨烯中的自旋选择性带隙打开以及特定CrI 3层中磁化的电场控制成为可能。通过第一性原理计算和传输数据的理论分析,阐明了微观工作原理。可靠的记忆晶体管操作(即存储器和逻辑器件组合操作)以及磁化石墨烯中朗道能级的自旋选择性探针,是通过通过电气手段对磁邻近效应进行微妙操纵来实现的。