当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultralight, strong, and self-reprogrammable mechanical metamaterials
Science Robotics ( IF 26.1 ) Pub Date : 2024-01-17 , DOI: 10.1126/scirobotics.adi2746
Christine E Gregg 1 , Damiana Catanoso 2 , Olivia Irene B Formoso 1 , Irina Kostitsyna 2 , Megan E Ochalek 1 , Taiwo J Olatunde 2 , In Won Park 2 , Frank M Sebastianelli 2 , Elizabeth M Taylor 1 , Greenfield T Trinh 1 , Kenneth C Cheung 1
Affiliation  

Versatile programmable materials have long been envisioned that can reconfigure themselves to adapt to changing use cases in adaptive infrastructure, space exploration, disaster response, and more. We introduce a robotic structural system as an implementation of programmable matter, with mechanical performance and scale on par with conventional high-performance materials and truss systems. Fiber-reinforced composite truss-like building blocks form strong, stiff, and lightweight lattice structures as mechanical metamaterials. Two types of mobile robots operate over the exterior surface and through the interior of the system, performing transport, placement, and reversible fastening using the intrinsic lattice periodicity for indexing and metrology. Leveraging programmable matter algorithms to achieve scalability in size and complexity, this system design enables robust collective automated assembly and reconfiguration of large structures with simple robots. We describe the system design and experimental results from a 256–unit cell assembly demonstration and lattice mechanical testing, as well as a demonstration of disassembly and reconfiguration. The assembled structural lattice material exhibits ultralight mass density (0.0103 grams per cubic centimeter) with high strength and stiffness for its weight ( 11.38 kilopascals and 1.1129 megapascals, respectively), a material performance realm appropriate for applications like space structures. With simple robots and structure, high mass-specific structural performance, and competitive throughput, this system demonstrates the potential for self-reconfiguring autonomous metamaterials for diverse applications.

中文翻译:


超轻、坚固、可自重新编程的机械超材料



长期以来,人们一直设想多功能可编程材料可以重新配置自身,以适应自适应基础设施、太空探索、灾难响应等领域不断变化的用例。我们引入了机器人结构系统作为可编程物质的实现,其机械性能和规模与传统的高性能材料和桁架系统相当。纤维增强复合材料桁架状构件形成坚固、坚硬且轻质的晶格结构作为机械超材料。两种类型的移动机器人在系统的外表面和内部运行,利用固有的晶格周期性进行索引和计量,执行运输、放置和可逆紧固。该系统设计利用可编程物质算法实现尺寸和复杂性的可扩展性,能够使用简单的机器人对大型结构进行鲁棒的集体自动组装和重新配置。我们描述了 256 个单元电池组装演示和晶格机械测试以及拆卸和重新配置演示的系统设计和实验结果。组装的结构晶格材料具有超轻的质量密度(0.0103克/立方厘米)以及相对于其重量的高强度和刚度(分别为11.38千帕和1.1129兆帕),这是适合空间结构等应用的材料性能领域。该系统具有简单的机器人和结构、高质量的特定结构性能和有竞争力的吞吐量,展示了用于多种应用的自重构自主超材料的潜力。
更新日期:2024-01-17
down
wechat
bug