当前位置:
X-MOL 学术
›
World Psychiatry
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Current evidence on the efficacy of mental health smartphone apps for symptoms of depression and anxiety. A meta-analysis of 176 randomized controlled trials
World Psychiatry ( IF 60.5 ) Pub Date : 2024-01-12 , DOI: 10.1002/wps.21183 Jake Linardon 1, 2 , John Torous 3 , Joseph Firth 4, 5 , Pim Cuijpers 6, 7 , Mariel Messer 1 , Matthew Fuller-Tyszkiewicz 1, 2
World Psychiatry ( IF 60.5 ) Pub Date : 2024-01-12 , DOI: 10.1002/wps.21183 Jake Linardon 1, 2 , John Torous 3 , Joseph Firth 4, 5 , Pim Cuijpers 6, 7 , Mariel Messer 1 , Matthew Fuller-Tyszkiewicz 1, 2
Affiliation
The mental health care available for depression and anxiety has recently undergone a major technological revolution, with growing interest towards the potential of smartphone apps as a scalable tool to treat these conditions. Since the last comprehensive meta-analysis in 2019 established positive yet variable effects of apps on depressive and anxiety symptoms, more than 100 new randomized controlled trials (RCTs) have been carried out. We conducted an updated meta-analysis with the objectives of providing more precise estimates of effects, quantifying generalizability from this evidence base, and understanding whether major app and trial characteristics moderate effect sizes. We included 176 RCTs that aimed to treat depressive or anxiety symptoms. Apps had overall significant although small effects on symptoms of depression (N=33,567, g=0.28, p<0.001; number needed to treat, NNT=11.5) and generalized anxiety (N=22,394, g=0.26, p<0.001, NNT=12.4) as compared to control groups. These effects were robust at different follow-ups and after removing small sample and higher risk of bias trials. There was less variability in outcome scores at post-test in app compared to control conditions (ratio of variance, RoV=–0.14, 95% CI: –0.24 to –0.05 for depressive symptoms; RoV=–0.21, 95% CI: –0.31 to –0.12 for generalized anxiety symptoms). Effect sizes for depression were significantly larger when apps incorporated cognitive behavioral therapy (CBT) features or included chatbot technology. Effect sizes for anxiety were significantly larger when trials had generalized anxiety as a primary target and administered a CBT app or an app with mood monitoring features. We found evidence of moderate effects of apps on social anxiety (g=0.52) and obsessive-compulsive (g=0.51) symptoms, a small effect on post-traumatic stress symptoms (g=0.12), a large effect on acrophobia symptoms (g=0.90), and a non-significant negative effect on panic symptoms (g=–0.12), although these results should be considered with caution, because most trials had high risk of bias and were based on small sample sizes. We conclude that apps have overall small but significant effects on symptoms of depression and generalized anxiety, and that specific features of apps – such as CBT or mood monitoring features and chatbot technology – are associated with larger effect sizes.
中文翻译:
关于心理健康智能手机应用程序对抑郁和焦虑症状疗效的当前证据。对 176 项随机对照试验的荟萃分析
可用于抑郁症和焦虑症的心理健康护理最近经历了一场重大的技术革命,人们对智能手机应用程序作为治疗这些疾病的可扩展工具的潜力越来越感兴趣。自 2019 年上一次全面的荟萃分析确定应用程序对抑郁和焦虑症状的积极但可变影响以来,已经进行了 100 多项新的随机对照试验 (RCT)。我们进行了一项更新的meta分析,目的是提供更精确的效果估计,从该证据基础中量化泛化性,并了解主要应用和试验特征是否适度效应大小。我们纳入了 176 项旨在治疗抑郁或焦虑症状的 RCT。与对照组相比,应用程序对抑郁症状 (N=33,567, g=0.28, p<0.001;需要治疗的人数, NNT=11.5) 和广泛性焦虑 (N=22,394, g=0.26, p<0.001, NNT=12.4) 的症状总体上具有显著影响。这些影响在不同的随访中以及去除小样本和较高偏倚风险的试验后是稳健的。与对照条件相比,应用程序后测试结果评分的变异性较小(方差比,RoV=–0.14,95% CI:抑郁症状为 –0.24 至 –0.05;RoV=–0.21,95% CI:广泛性焦虑症状为 –0.31 至 –0.12)。当应用程序包含认知行为疗法 (CBT) 功能或包含聊天机器人技术时,抑郁症的效应大小明显更大。当试验以广泛性焦虑为主要目标并使用 CBT 应用程序或具有情绪监测功能的应用程序时,焦虑的效应量显着更大。我们发现有证据表明应用程序对社交焦虑 (g=0.52) 和强迫症 (g=0.51) 症状,对创伤后应激症状影响较小 (g=0.12),对恐高症症状影响大 (g=0.90),对恐恐症症状无显著负面影响 (g=-0.12),尽管应谨慎考虑这些结果,因为大多数试验具有高偏倚风险并且基于小样本量。我们得出的结论是,应用程序对抑郁和广泛性焦虑症状的影响总体上很小但很重要,并且应用程序的特定功能(例如 CBT 或情绪监测功能和聊天机器人技术)与较大的效应大小相关。
更新日期:2024-01-17
中文翻译:
关于心理健康智能手机应用程序对抑郁和焦虑症状疗效的当前证据。对 176 项随机对照试验的荟萃分析
可用于抑郁症和焦虑症的心理健康护理最近经历了一场重大的技术革命,人们对智能手机应用程序作为治疗这些疾病的可扩展工具的潜力越来越感兴趣。自 2019 年上一次全面的荟萃分析确定应用程序对抑郁和焦虑症状的积极但可变影响以来,已经进行了 100 多项新的随机对照试验 (RCT)。我们进行了一项更新的meta分析,目的是提供更精确的效果估计,从该证据基础中量化泛化性,并了解主要应用和试验特征是否适度效应大小。我们纳入了 176 项旨在治疗抑郁或焦虑症状的 RCT。与对照组相比,应用程序对抑郁症状 (N=33,567, g=0.28, p<0.001;需要治疗的人数, NNT=11.5) 和广泛性焦虑 (N=22,394, g=0.26, p<0.001, NNT=12.4) 的症状总体上具有显著影响。这些影响在不同的随访中以及去除小样本和较高偏倚风险的试验后是稳健的。与对照条件相比,应用程序后测试结果评分的变异性较小(方差比,RoV=–0.14,95% CI:抑郁症状为 –0.24 至 –0.05;RoV=–0.21,95% CI:广泛性焦虑症状为 –0.31 至 –0.12)。当应用程序包含认知行为疗法 (CBT) 功能或包含聊天机器人技术时,抑郁症的效应大小明显更大。当试验以广泛性焦虑为主要目标并使用 CBT 应用程序或具有情绪监测功能的应用程序时,焦虑的效应量显着更大。我们发现有证据表明应用程序对社交焦虑 (g=0.52) 和强迫症 (g=0.51) 症状,对创伤后应激症状影响较小 (g=0.12),对恐高症症状影响大 (g=0.90),对恐恐症症状无显著负面影响 (g=-0.12),尽管应谨慎考虑这些结果,因为大多数试验具有高偏倚风险并且基于小样本量。我们得出的结论是,应用程序对抑郁和广泛性焦虑症状的影响总体上很小但很重要,并且应用程序的特定功能(例如 CBT 或情绪监测功能和聊天机器人技术)与较大的效应大小相关。