当前位置:
X-MOL 学术
›
World Psychiatry
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Current evidence on the efficacy of mental health smartphone apps for symptoms of depression and anxiety. A meta-analysis of 176 randomized controlled trials
World Psychiatry ( IF 60.5 ) Pub Date : 2024-01-12 , DOI: 10.1002/wps.21183 Jake Linardon 1, 2 , John Torous 3 , Joseph Firth 4, 5 , Pim Cuijpers 6, 7 , Mariel Messer 1 , Matthew Fuller-Tyszkiewicz 1, 2
World Psychiatry ( IF 60.5 ) Pub Date : 2024-01-12 , DOI: 10.1002/wps.21183 Jake Linardon 1, 2 , John Torous 3 , Joseph Firth 4, 5 , Pim Cuijpers 6, 7 , Mariel Messer 1 , Matthew Fuller-Tyszkiewicz 1, 2
Affiliation
The mental health care available for depression and anxiety has recently undergone a major technological revolution, with growing interest towards the potential of smartphone apps as a scalable tool to treat these conditions. Since the last comprehensive meta-analysis in 2019 established positive yet variable effects of apps on depressive and anxiety symptoms, more than 100 new randomized controlled trials (RCTs) have been carried out. We conducted an updated meta-analysis with the objectives of providing more precise estimates of effects, quantifying generalizability from this evidence base, and understanding whether major app and trial characteristics moderate effect sizes. We included 176 RCTs that aimed to treat depressive or anxiety symptoms. Apps had overall significant although small effects on symptoms of depression (N=33,567, g=0.28, p<0.001; number needed to treat, NNT=11.5) and generalized anxiety (N=22,394, g=0.26, p<0.001, NNT=12.4) as compared to control groups. These effects were robust at different follow-ups and after removing small sample and higher risk of bias trials. There was less variability in outcome scores at post-test in app compared to control conditions (ratio of variance, RoV=–0.14, 95% CI: –0.24 to –0.05 for depressive symptoms; RoV=–0.21, 95% CI: –0.31 to –0.12 for generalized anxiety symptoms). Effect sizes for depression were significantly larger when apps incorporated cognitive behavioral therapy (CBT) features or included chatbot technology. Effect sizes for anxiety were significantly larger when trials had generalized anxiety as a primary target and administered a CBT app or an app with mood monitoring features. We found evidence of moderate effects of apps on social anxiety (g=0.52) and obsessive-compulsive (g=0.51) symptoms, a small effect on post-traumatic stress symptoms (g=0.12), a large effect on acrophobia symptoms (g=0.90), and a non-significant negative effect on panic symptoms (g=–0.12), although these results should be considered with caution, because most trials had high risk of bias and were based on small sample sizes. We conclude that apps have overall small but significant effects on symptoms of depression and generalized anxiety, and that specific features of apps – such as CBT or mood monitoring features and chatbot technology – are associated with larger effect sizes.
中文翻译:
关于心理健康智能手机应用程序对抑郁和焦虑症状的功效的最新证据。 176 项随机对照试验的荟萃分析
用于治疗抑郁症和焦虑症的心理保健最近经历了一场重大的技术革命,人们对智能手机应用程序作为治疗这些疾病的可扩展工具的潜力越来越感兴趣。自 2019 年上次综合荟萃分析确定应用程序对抑郁和焦虑症状产生积极但可变的影响以来,已经开展了 100 多项新的随机对照试验 (RCT)。我们进行了更新的荟萃分析,目的是提供更精确的效果估计,量化该证据基础的普遍性,并了解主要应用程序和试验特征是否会调节效果大小。我们纳入了 176 项旨在治疗抑郁或焦虑症状的随机对照试验。应用程序对抑郁症状(N=33,567,g=0.28,p<0.001;需要治疗的人数,NNT=11.5)和广泛性焦虑症状(N=22,394,g=0.26,p<0.001,NNT)总体上具有显着影响,但影响较小=12.4)与对照组相比。在不同的随访中以及在去除小样本和较高偏倚风险的试验后,这些效果是稳健的。与对照条件相比,应用程序测试后结果评分的变异性较小(抑郁症状的方差比,RoV=–0.14,95% CI:–0.24 至 –0.05;RoV=–0.21,95% CI:–广泛性焦虑症状为 0.31 至 –0.12)。当应用程序纳入认知行为疗法 (CBT) 功能或包含聊天机器人技术时,抑郁症的影响大小明显更大。当试验将广泛性焦虑作为主要目标并使用 CBT 应用程序或具有情绪监测功能的应用程序时,焦虑的效应大小明显更大。我们发现了应用程序对社交焦虑 (g=0.52) 和强迫症 (g=0.52) 产生中等影响的证据。51)症状,对创伤后应激症状影响较小(g=0.12),对恐高症状影响较大(g=0.90),对恐慌症状影响不显着(g=–0.12),尽管这些应谨慎考虑结果,因为大多数试验都具有较高的偏倚风险,并且样本量较小。我们得出的结论是,应用程序对抑郁和广泛性焦虑症状的影响总体虽小但显着,并且应用程序的特定功能(例如 CBT 或情绪监测功能和聊天机器人技术)与更大的效应大小相关。
更新日期:2024-01-17
中文翻译:
关于心理健康智能手机应用程序对抑郁和焦虑症状的功效的最新证据。 176 项随机对照试验的荟萃分析
用于治疗抑郁症和焦虑症的心理保健最近经历了一场重大的技术革命,人们对智能手机应用程序作为治疗这些疾病的可扩展工具的潜力越来越感兴趣。自 2019 年上次综合荟萃分析确定应用程序对抑郁和焦虑症状产生积极但可变的影响以来,已经开展了 100 多项新的随机对照试验 (RCT)。我们进行了更新的荟萃分析,目的是提供更精确的效果估计,量化该证据基础的普遍性,并了解主要应用程序和试验特征是否会调节效果大小。我们纳入了 176 项旨在治疗抑郁或焦虑症状的随机对照试验。应用程序对抑郁症状(N=33,567,g=0.28,p<0.001;需要治疗的人数,NNT=11.5)和广泛性焦虑症状(N=22,394,g=0.26,p<0.001,NNT)总体上具有显着影响,但影响较小=12.4)与对照组相比。在不同的随访中以及在去除小样本和较高偏倚风险的试验后,这些效果是稳健的。与对照条件相比,应用程序测试后结果评分的变异性较小(抑郁症状的方差比,RoV=–0.14,95% CI:–0.24 至 –0.05;RoV=–0.21,95% CI:–广泛性焦虑症状为 0.31 至 –0.12)。当应用程序纳入认知行为疗法 (CBT) 功能或包含聊天机器人技术时,抑郁症的影响大小明显更大。当试验将广泛性焦虑作为主要目标并使用 CBT 应用程序或具有情绪监测功能的应用程序时,焦虑的效应大小明显更大。我们发现了应用程序对社交焦虑 (g=0.52) 和强迫症 (g=0.52) 产生中等影响的证据。51)症状,对创伤后应激症状影响较小(g=0.12),对恐高症状影响较大(g=0.90),对恐慌症状影响不显着(g=–0.12),尽管这些应谨慎考虑结果,因为大多数试验都具有较高的偏倚风险,并且样本量较小。我们得出的结论是,应用程序对抑郁和广泛性焦虑症状的影响总体虽小但显着,并且应用程序的特定功能(例如 CBT 或情绪监测功能和聊天机器人技术)与更大的效应大小相关。