Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A comparative study of the performance of E. coli and K. phaffii for expressing α-cobratoxin
Toxicon ( IF 2.6 ) Pub Date : 2024-01-11 , DOI: 10.1016/j.toxicon.2024.107613 Anna Damsbo 1 , Charlotte Rimbault 1 , Nick J Burlet 1 , Anneline Vlamynck 1 , Ida Bisbo 1 , Selma B Belfakir 2 , Andreas H Laustsen 1 , Esperanza Rivera-de-Torre 1
Toxicon ( IF 2.6 ) Pub Date : 2024-01-11 , DOI: 10.1016/j.toxicon.2024.107613 Anna Damsbo 1 , Charlotte Rimbault 1 , Nick J Burlet 1 , Anneline Vlamynck 1 , Ida Bisbo 1 , Selma B Belfakir 2 , Andreas H Laustsen 1 , Esperanza Rivera-de-Torre 1
Affiliation
Three-finger toxins (3FTxs) have traditionally been obtained via venom fractionation of whole venoms from snakes. This method often yields functional toxins, but it can be difficult to obtain pure isoforms, as it is challenging to separate the many different toxins with similar physicochemical properties that generally exist in many venoms. This issue can be circumvented via the use of recombinant expression. However, achieving the correct disulfide bond formation in recombinant toxins is challenging and requires extensive optimization of expression and purification methods to enhance stability and functionality. In this study, we investigated the expression of α-cobratoxin, a well-characterized 3FTx from the monocled cobra (), in three different expression systems, namely BL21 (DE3) cells with the csCyDisCo plasmid, SHuffle cells, and (formerly known as ). While none of the tested systems yielded α-cobratoxin identical to the variant isolated from whole venom, the His-tagged α-cobratoxin expressed in exhibited a comparable secondary structure according to circular dichroism spectra and similar binding properties to the α7 subunit of the nicotinic acetylcholine receptor. The findings presented here illustrate the advantages and limitations of the different expression systems and can help guide researchers who wish to express 3FTxs.
中文翻译:
大肠杆菌和K.phaffii表达α-眼镜蛇毒素性能的比较研究
三指毒素(3FTxs)传统上是通过蛇毒的毒液分馏获得的。这种方法通常会产生功能性毒素,但很难获得纯同工型,因为分离通常存在于许多毒液中的具有相似理化性质的许多不同毒素具有挑战性。这个问题可以通过使用重组表达来避免。然而,在重组毒素中实现正确的二硫键形成具有挑战性,需要广泛优化表达和纯化方法以增强稳定性和功能性。在本研究中,我们研究了 α-眼镜蛇毒素(一种来自单眼镜蛇的 3FTx)在三种不同表达系统中的表达,即带有 csCyDisCo 质粒的 BL21 (DE3) 细胞、SHuffle 细胞和(以前称为)。虽然没有一个测试系统产生与从全毒液中分离出的变体相同的 α-眼镜蛇毒素,但根据圆二色光谱,表达的带有组氨酸标签的 α-眼镜蛇毒素表现出相当的二级结构,并且与烟碱乙酰胆碱的 α7 亚基具有相似的结合特性。受体。这里提出的研究结果说明了不同表达系统的优点和局限性,可以帮助指导希望表达 3FTx 的研究人员。
更新日期:2024-01-11
中文翻译:
大肠杆菌和K.phaffii表达α-眼镜蛇毒素性能的比较研究
三指毒素(3FTxs)传统上是通过蛇毒的毒液分馏获得的。这种方法通常会产生功能性毒素,但很难获得纯同工型,因为分离通常存在于许多毒液中的具有相似理化性质的许多不同毒素具有挑战性。这个问题可以通过使用重组表达来避免。然而,在重组毒素中实现正确的二硫键形成具有挑战性,需要广泛优化表达和纯化方法以增强稳定性和功能性。在本研究中,我们研究了 α-眼镜蛇毒素(一种来自单眼镜蛇的 3FTx)在三种不同表达系统中的表达,即带有 csCyDisCo 质粒的 BL21 (DE3) 细胞、SHuffle 细胞和(以前称为)。虽然没有一个测试系统产生与从全毒液中分离出的变体相同的 α-眼镜蛇毒素,但根据圆二色光谱,表达的带有组氨酸标签的 α-眼镜蛇毒素表现出相当的二级结构,并且与烟碱乙酰胆碱的 α7 亚基具有相似的结合特性。受体。这里提出的研究结果说明了不同表达系统的优点和局限性,可以帮助指导希望表达 3FTx 的研究人员。