当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
3D Micro-Flower Structured BiFeO3 Constructing High Energy Efficiency/Stability Potassium Ion Batteries Over Wide Temperature Range
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-01-14 , DOI: 10.1002/adfm.202313300 Jinlin Guo 1 , Lu Wang 2 , Aiguo Hu 1 , Jie Zhang 1 , Zhubing Xiao 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-01-14 , DOI: 10.1002/adfm.202313300 Jinlin Guo 1 , Lu Wang 2 , Aiguo Hu 1 , Jie Zhang 1 , Zhubing Xiao 1
Affiliation
The fatty K+ ion calls for suitable host materials to meet the requirement for high safety and long-term stability of potassium-ion batteries (PIBs) to rival lithium-ion batteries, thus anode materials possessing high capacity, high stability, and well-defined plateaus involving favorable working voltage (≈0.5 V) have always been desired. Here, a 3D BiFeO3 with micro-flower structure (BFO-MF) constructed by nanosheets is proposed as an anode for PIBs. Density functional theory calculations evidence that the intrinsically favorable affinity and diffusion for K+ ion render fast electrochemical kinetics and attenuated voltage-hysteresis, and electrochemical measurements indicate that the stable 3D structure of BFO-MF enables to achieve impressive performances including a high capacity of 606 mAh g−1, flat plateaus at ≈0.5 V, stable performances for 5000 cycles at 500 mA g−1, and 500 cycles at 100 mA g−1 upon −20 °C. In situ and ex situ characterizations definitely elucidate the conversion and alloy/dealloy mechanism. The satisfying features of BFO-MF anode ensure full-cells to achieve excellent cyclic performances, and a high energy efficiency retention rate of ≈98.2% for the cathode, with energy density/power density output up to 177.1 Wh kg−1/2152.8 W kg−1, respectively. This work can provide new insights for developing advanced anodes for PIBs.
中文翻译:
3D微花结构BiFeO3构建宽温度范围内高能效/稳定性钾离子电池
脂肪K +离子需要合适的基质材料来满足钾离子电池(PIB)与锂离子电池竞争的高安全性和长期稳定性的要求,从而使负极材料具有高容量、高稳定性和良好的性能。涉及有利工作电压(约 0.5 V)的定义平台一直是人们所期望的。在此,提出了由纳米片构建的具有微花结构(BFO-MF)的3D BiFeO 3作为PIB的阳极。密度泛函理论计算证明,K +离子本质上有利的亲和力和扩散可实现快速电化学动力学和减弱的电压滞后,电化学测量表明 BFO-MF 的稳定 3D 结构能够实现令人印象深刻的性能,包括 606 的高容量mAh g -1,在约0.5 V处平坦,在-20 °C下500 mA g -1下5000次循环和100 mA g -1下500次循环性能稳定。原位和非原位表征明确阐明了转化和合金/脱合金机制。 BFO-MF负极的令人满意的特性保证了全电池实现优异的循环性能,正极的能量效率保持率约为98.2%,能量密度/功率密度输出高达177.1 Wh kg -1 /2152.8 W分别为kg -1。这项工作可以为开发 PIB 先进阳极提供新的见解。
更新日期:2024-01-14
中文翻译:
3D微花结构BiFeO3构建宽温度范围内高能效/稳定性钾离子电池
脂肪K +离子需要合适的基质材料来满足钾离子电池(PIB)与锂离子电池竞争的高安全性和长期稳定性的要求,从而使负极材料具有高容量、高稳定性和良好的性能。涉及有利工作电压(约 0.5 V)的定义平台一直是人们所期望的。在此,提出了由纳米片构建的具有微花结构(BFO-MF)的3D BiFeO 3作为PIB的阳极。密度泛函理论计算证明,K +离子本质上有利的亲和力和扩散可实现快速电化学动力学和减弱的电压滞后,电化学测量表明 BFO-MF 的稳定 3D 结构能够实现令人印象深刻的性能,包括 606 的高容量mAh g -1,在约0.5 V处平坦,在-20 °C下500 mA g -1下5000次循环和100 mA g -1下500次循环性能稳定。原位和非原位表征明确阐明了转化和合金/脱合金机制。 BFO-MF负极的令人满意的特性保证了全电池实现优异的循环性能,正极的能量效率保持率约为98.2%,能量密度/功率密度输出高达177.1 Wh kg -1 /2152.8 W分别为kg -1。这项工作可以为开发 PIB 先进阳极提供新的见解。