当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dual-Hyperspectral Optical Pump–Probe Microscopy with Single-Nanosecond Time Resolution
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-01-12 , DOI: 10.1021/jacs.3c12284 Bowen Li 1, 2 , Joy Xu 1, 2 , Conrad A Kocoj 1, 2 , Shunran Li 1, 2 , Yanyan Li 1, 2 , Du Chen 1, 2 , Shuchen Zhang 3 , Letian Dou 3, 4 , Peijun Guo 1, 2
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-01-12 , DOI: 10.1021/jacs.3c12284 Bowen Li 1, 2 , Joy Xu 1, 2 , Conrad A Kocoj 1, 2 , Shunran Li 1, 2 , Yanyan Li 1, 2 , Du Chen 1, 2 , Shuchen Zhang 3 , Letian Dou 3, 4 , Peijun Guo 1, 2
Affiliation
In recent years, optical pump–probe microscopy (PPM) has become a vital technique for spatiotemporally imaging electronic excitations and charge-carrier transport in metals and semiconductors. However, existing methods are limited by mechanical delay lines with a probe time window up to several nanoseconds (ns) or monochromatic pump and probe sources with restricted spectral coverage and temporal resolution, hindering their amenability in studying relatively slow processes. To bridge these gaps, we introduce a dual-hyperspectral PPM setup with a time window spanning from nanoseconds to milliseconds and single-nanosecond resolution. Our method features a wide-field probe tunable from 370 to 1000 nm and a pump spanning from 330 nm to 16 μm. We apply this PPM technique to study various two-dimensional metal-halide perovskites (2D-MHPs) as representative semiconductors by imaging their transient responses near the exciton resonances under both above-band gap electronic pump excitation and below-band gap vibrational pump excitation. The resulting spatially and temporally resolved images reveal insights into heat dissipation, film uniformity, distribution of impurity phases, and film–substrate interfaces. In addition, the single-nanosecond temporal resolution enables the imaging of in-plane strain wave propagation in 2D-MHP single crystals. Our method, which offers extensive spectral tunability and significantly improved time resolution, opens new possibilities for the imaging of charge carriers, heat, and transient phase transformation processes, particularly in materials with spatially varying composition, strain, crystalline structure, and interfaces.
中文翻译:
具有单纳秒时间分辨率的双高光谱光泵-探针显微镜
近年来,光泵浦探针显微镜(PPM)已成为金属和半导体中电子激发和载流子传输时空成像的重要技术。然而,现有方法受到探测时间窗口高达几纳秒 (ns) 的机械延迟线或光谱覆盖范围和时间分辨率有限的单色泵浦和探测源的限制,阻碍了它们研究相对较慢的过程的适应性。为了弥补这些差距,我们引入了双高光谱 PPM 设置,其时间窗口从纳秒到毫秒,分辨率为单纳秒。我们的方法具有可调谐范围为 370 至 1000 nm 的宽场探头和跨度为 330 nm 至 16 μm 的泵浦。我们应用这种 PPM 技术来研究各种二维金属卤化物钙钛矿 (2D-MHP) 作为代表性半导体,通过在带隙以上电子泵浦激励和带隙以下振动泵浦激励下对激子共振附近的瞬态响应进行成像。所得的空间和时间分辨率图像揭示了对散热、薄膜均匀性、杂质相分布和薄膜-基底界面的见解。此外,单纳秒的时间分辨率能够对 2D-MHP 单晶中的面内应变波传播进行成像。我们的方法提供了广泛的光谱可调性和显着提高的时间分辨率,为载流子、热和瞬态相变过程的成像开辟了新的可能性,特别是在具有空间变化的成分、应变、晶体结构和界面的材料中。
更新日期:2024-01-12
中文翻译:
具有单纳秒时间分辨率的双高光谱光泵-探针显微镜
近年来,光泵浦探针显微镜(PPM)已成为金属和半导体中电子激发和载流子传输时空成像的重要技术。然而,现有方法受到探测时间窗口高达几纳秒 (ns) 的机械延迟线或光谱覆盖范围和时间分辨率有限的单色泵浦和探测源的限制,阻碍了它们研究相对较慢的过程的适应性。为了弥补这些差距,我们引入了双高光谱 PPM 设置,其时间窗口从纳秒到毫秒,分辨率为单纳秒。我们的方法具有可调谐范围为 370 至 1000 nm 的宽场探头和跨度为 330 nm 至 16 μm 的泵浦。我们应用这种 PPM 技术来研究各种二维金属卤化物钙钛矿 (2D-MHP) 作为代表性半导体,通过在带隙以上电子泵浦激励和带隙以下振动泵浦激励下对激子共振附近的瞬态响应进行成像。所得的空间和时间分辨率图像揭示了对散热、薄膜均匀性、杂质相分布和薄膜-基底界面的见解。此外,单纳秒的时间分辨率能够对 2D-MHP 单晶中的面内应变波传播进行成像。我们的方法提供了广泛的光谱可调性和显着提高的时间分辨率,为载流子、热和瞬态相变过程的成像开辟了新的可能性,特别是在具有空间变化的成分、应变、晶体结构和界面的材料中。