Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2024-01-12 , DOI: 10.1016/j.jctb.2023.12.005 Tom Bohman , Jakob Hofstad
The biclique partition number of a graph , denoted , is the minimum number of pairwise edge disjoint complete bipartite subgraphs of G so that each edge of G belongs to exactly one of them. It is easy to see that , where is the maximum size of an independent set of G. Erdős conjectured in the 80's that for almost every graph G equality holds; i.e., if then with high probability. Alon showed that this is false. We show that the conjecture of Erdős is true if we instead take , where p is constant and less than a certain threshold value . This verifies a conjecture of Chung and Peng for these values of p. We also show that if then with high probability.
中文翻译:
Gn,p 双团划分的临界概率
图的 biclique 分区数,表示为,是G的成对边不相交完全二部子图的最小数量,使得G的每条边恰好属于其中一个。很容易看出, 在哪里是独立组G的最大大小。Erdős 在 80 年代推测,对于几乎所有图G等式都成立;即,如果然后有很高的概率。阿隆证明这是错误的。如果我们取而代之,我们证明 Erdős 的猜想是正确的,其中p是常数且小于某个阈值。这验证了 Chung 和 Peng 对这些p值的猜想。我们还表明,如果然后有很高的概率。