当前位置: X-MOL 学术J. Comb. Theory B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A critical probability for biclique partition of Gn,p
Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2024-01-12 , DOI: 10.1016/j.jctb.2023.12.005
Tom Bohman , Jakob Hofstad

The biclique partition number of a graph G=(V,E), denoted bp(G), is the minimum number of pairwise edge disjoint complete bipartite subgraphs of G so that each edge of G belongs to exactly one of them. It is easy to see that bp(G)nα(G), where α(G) is the maximum size of an independent set of G. Erdős conjectured in the 80's that for almost every graph G equality holds; i.e., if G=Gn,1/2 then bp(G)=nα(G) with high probability. Alon showed that this is false. We show that the conjecture of Erdős is true if we instead take G=Gn,p, where p is constant and less than a certain threshold value p00.312. This verifies a conjecture of Chung and Peng for these values of p. We also show that if p0<p<1/2 then bp(Gn,p)=n(1+Θ(1))α(Gn,p) with high probability.



中文翻译:

Gn,p 双团划分的临界概率

图的 biclique 分区数G=V,,表示为pG,是G的成对边不相交完全二部子图的最小数量,使得G的每条边恰好属于其中一个。很容易看出pGn-αG, 在哪里αG是独立组G的最大大小。Erdős 在 80 年代推测,对于几乎所有图G等式都成立;即,如果G=Gn,1/2然后pG=n-αG有很高的概率。阿隆证明这是错误的。如果我们取而代之,我们证明 Erdős 的猜想是正确的G=Gn,p,其中p是常数且小于某个阈值p00.312这验证了 Chung 和 Peng 对这些p值的猜想。我们还表明,如果p0<p<1/2然后pGn,p=n-1+θ1αGn,p有很高的概率。

更新日期:2024-01-14
down
wechat
bug